Genotyping of *Giardia duodenalis* isolates from human subjects in Zabul, using PCR-RFLP

Maryam Abedi1, Farshad Nojoomi1, Mansoor Dabirzadeh2

1Department of Parasitology, Faculty of Medical Sciences, Zabul University, Zabul, Iran
2Microbiology Department, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran

ARTICLE INFO

Article history:
Received 18 Aug 2016
Received in revised form 25 Aug 2016
Accepted 8 Sep 2016
Available online 12 Sep 2016

Keywords:
Giardia duodenalis
Genotyping
Zabul
PCR-RFLP

ABSTRACT

Objective: To uncover the molecular prevalence of *Giardia duodenalis* by PCR-restriction fragment length polymorphism (RFLP) in Zabul city, Iran.

Methods: Twenty-four stool samples were collected from 215 patients with suspected giardiasis by microscopic examination. To increase the sensitivity of the PCR, the total genomic DNA from isolates was extracted by applying glass beads and the QIAamp Kit. A one-step PCR-RFLP method, targeting the glutamate dehydrogenase gene, was utilized to differentiate the assemblages A and B among isolates.

Results: The PCR fragment was determined from 30 isolates, RFLP assay of 24 isolates showed 24 (100) isolates as Genotype B group BIII.

Conclusions: The results with the glutamate dehydrogenase gene assay demonstrated that the predominant subtype of *Giardia duodenalis* in the area is BIII, which showed animals are the main reservoir of the isolates in this area.

1. Introduction

Giardia duodenalis (*G. duodenalis*) is an intestinal protozoon that commonly infects humans and a wide spectrum of various mammals[1]. It is also considered as the most important intestinal pathogenic protozoa in the North America, a wiki world, and developing countries as a common infection in childhood[2]. *Giardia* release about 280 million per year and transmit by person directly or indirectly through ingestion of cysts in contaminated food and drinking water[2].

In endemic areas, about 70% of infected people do not develop symptoms of giardiasis. However, most of affected children will develop the symptoms of giardiasis, but most adults have no symptoms and play a role as healthy carriers[3].

Infections might be asymptomatic or show symptoms of weight loss, chronic diarrhea and malabsorption[4]. Other manifestations of chronic giardiasis are loose, greasy and soft stools, complications in the visceral area, general feeling of discomfort or ailment and weakness and fatigue. Molecular methods such as the PCR-restriction fragment length polymorphism (RFLP) and sequence typing of several housekeeping loci have demonstrated the *G. duodenalis* as a complex species including eight major assemblages (A to H). The geographic distribution of these *G. duodenalis* genotypes is wide[5,6]. Genetic surveys have uncovered that sit is specific for *Giardia* and group G isolates are from rats[5,8,9]. Some *Giardia* genotypes exhibit narrower host specificity, especially those among dogs, cats, rats, muskrats, hoofed animals and voles. The sequence analysis of the *GDH* locus by molecular techniques could differentiate subgroups such as AI, AII, BIII, and BIV[10]. Several molecular techniques, including multiplex PCR, PCR-RFLP, PCR, and sequence assessment of housekeeping loci have proved to be used as tools for discrimination of all assemblages and to provide powerful tools for understanding molecular epidemiology, infection sources and zoonotic potential of human giardiasis[11,12]. The aim of our study was to detect the *Giardia lamblia* genotypes of human isolates in Zabul, Iran. The study has been reported for the first time in the regard. The PCR-RFLP protocol employed is proper for the typing of
the *Giardia* cysts in feces or other samples.

2. Methods and materials

2.1. Collection of samples

Samples were obtained from several laboratories. Stool specimens were evaluated under the light microscopy and Lugol’s iodine stain wet mount. Specimens, comprising cysts were concentrated and purified by the flotation method with sucrose having specific gravity 1 mol/L and next were stored at –20 °C until further study.

2.2. Purification of the cyst

Cysts were somewhat purified from the stool material by using the density gradient of sucrose protocol[13] and then washed with distilled sterile water. All the samples were placed at –20 °C with no preservatives until the DNA extraction and further tests.

2.3. Extraction of the DNA

G. duodenalis cysts were frozen and thawed for 10 times at –80 °C. Subsequently, DNA was obtained of 200 µL the purified specimens by the QiAamp KiAspin Kit (Qiagen, Germany) by following the manufacturer’s instructions. Extracted DNA in tubes was placed at –20 °C till further study.

2.4. PCR of the GDH gene

In the PCR reaction, a product of 458 base pair of the GDH gene was amplified with primer forward 5'-TCA ACG TCA ACC GCG GCT TCC GT 3' and reverse 5'-GTT GTC CTT GCA CAT CTC C-3'. Resulting from the present research, 24 (100%) of the 24 isolates were determined as assemblage B group BIII.

2.5. RFLP analysis

RFLP analysis was done with digestion of 10 µL of PCR products using 0.5 µL of Bsp1l and 2.5 µL of restriction buffer (Tango buffer, fermentase) in a total volume of 20 µL for 3 h at 37 °C. For those isolates that exhibited the assemblage B genotyping profile, RsaI restriction enzyme was employed to distinct between the BII and BIV as following; 10 µL product of PCR was added in a mixture of 1 µL (10 IU) of RsaI , 2.5 µL of restriction buffer (Tango buffer fermentase) and 13 µL of distilled water. The reaction mixture then was placed in 37 °C for 3 h. The digested fragments were run and differentiated on 2.5% agarose gel that was stained with the DNA green staining.

2.6. Ethical approval

The study protocol was performed according to the Helsinki declaration and approved by Zabul University of Medical Sciences. Informed written consent was obtained from Research part of Zabul University of Medical Sciences, Zabul, Iran.

3. Results

3.1. Patients' history

Among 30 patients, 19 (63.33%) were female and 11 (36.67%) were male. The age range was 1–69 years with the mean age of (34.33 ± 5.67) years. Twenty-two patients were literate and eight were illiterate. Twelve (40.00%) patients were in age range under 10 years. Table 1 exhibits patients’ history and positive stool samples of *Giardia lamblia*. One female pediatric patient (8 years) was dead due to the infection.

Table 1

<table>
<thead>
<tr>
<th>Patients' characteristics</th>
<th>Stool positive (%)</th>
<th>Death rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literate (n = 22)</td>
<td>100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Illiterate (n = 8)</td>
<td>75.00</td>
<td>12.50</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n = 11)</td>
<td>90.90</td>
<td>0.00</td>
</tr>
<tr>
<td>Female (n = 19)</td>
<td>94.73</td>
<td>9.09</td>
</tr>
<tr>
<td>< 10 (n = 12)</td>
<td>100.00</td>
<td>8.33</td>
</tr>
<tr>
<td>10–25 (n = 6)</td>
<td>100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>25–50 (n = 5)</td>
<td>80.00</td>
<td>0.00</td>
</tr>
<tr>
<td>50–70 (n = 7)</td>
<td>85.71</td>
<td>0.00</td>
</tr>
</tbody>
</table>

3.2. PCR assay and RFLP results

On the 30 samples, the GDH gene was amplified using glass beads and kit method. Twenty-four samples were amplified, but because of employing the glass beads and QIAgen kit in all remaining 30 isolates, the 458 bp expected size was amplified (Figure 1). Resulting from the present research, 24 (100%) of the 24 isolates were determined as assemblage B group BII.

Figure 1. The GDH gene with 458 bp size.

M: Marker; Columns 1–3, 6 and 7: Positive samples; Columns 4 and 5: Control negative and positive samples, respectively.

4. Discussion

G. duodenalis, as a small intestinal protozoan parasite, is spread all over the world.

The main aim of the current study was to detect the genotypes of *G. duodenalis* isolates in Zabul city. This is the first study of genotyping of *Giardia* to identify and differentiate human strains of *Giardia* molecular features. Molecular assays such as PCR are employed to classify *G. duodenalis* to assemblages and sub-assemblages. Most of studies have applied tests related to one or more of four genetic sequences including small subunit ribosomal RNA (SSU-rRNA) and the triosephosphate isomerase, β-giardin and GDH genes[14-16]. Many of studies assess only a single gene, mostly SSU-rRNA. While the amplification of a distinct gene or of course a different set of PCR primers may occasionally assign the identical
isolate as a non-related assemblage. PCR-RFLP is an analytical and robust method sensitive for determining the genotype of the parasites[17]. The use of stool samples for the presence of lipids, hemoglobin, bile and polysaccharide inhibit PCR with regard to the problems of cultured parasites, which firstly requires a lot of time there and secondly multiple infection medium. Using a method known as sucrose concentration method, the material and bacterium inhibitors that have lowered the stool can be used both directly from stool specimens without culturing the parasite, which makes it possible[18].

All of isolates were classified in the assemblage BIII in this study. Studies of the last few years from some parts of Iran on the genotypet determination of human isolates of Giardia have been more or less similar to other parts of the world[15,19].

In a study by Ramírez et al., the assemblage B was predominant in G. duodenalis in Colombia. Moreover, the PCR for the SSU-rDNA was more sensitive than for TPI and GDH. The microscopy exhibited flaws for the diagnosis of G. duodenalis[18].

In contrast to these results, the studies in Kerman, Isfahan University and Tehran obtained the opposite results of Zabol in the region to identify the genotype of the parasite and its obscure pathophysiology, future research is referred to studies in the laboratories of the proposal is referred to a study in the region to identify the genotype of G. duodenalis cysts from human faecal samples. Int J Parasitol 2002; 32: 1023-30.

According to the results of PCR-RFLP using gene region, glutamate dehydrogenase, sub-dominant in this region, BIII which indicates that the reservoirs of animals have results contrary to some studies, The majority of studies suggests that humans are the reservoir of the infection. It is worth noting that in this series of genotype A multitude of studies have clearly seen.

Based on geographic variations and different patterns of molecular markers for genotyping G. duodenalis obtained due to the heterogeneity of the parasite and its obscure pathophysiology, future research is needed in this regard in addition to research on zoonoses. Given that this research conducted in the laboratories of the proposal is referred to a study in the region to identify the genotype of G. duodenalis in the entire area to be done. Animals are considered as the most important source of some genotypes, thus establishing contact with them and sewage water resource control should be taken seriously. Thus, controlling surface water and animal resources in terms of parasites genotyping seems to be necessary.

Conflict of interest statement
We declare that we have no conflict of interest.

Acknowledgments
This study was sponsored by Zabol University of Medical Sciences (Grant No. 1393/3478a.). The authors acknowledge Abdolsadat Ghasemian for helping the writing and English editing of the manuscript.

References