Total phenolic compounds, antioxidant potential and α-glucosidase inhibition by Tunisian Euphorbia paralias L.

Malek Besbes Hlila1,2, Kaouther Majouli2, Fethia Harzallah Skhiri1, Hichem Ben Jannet4, Mahjoub Aouni1, Maha Mastouri1, Boulbaba Selmi3

1Laboratory of Transmissible Diseases and Biological Active Substances, Faculty of Pharmacy, University of Monastir, Avenue Avicenne, 5000 Monastir, Tunisia

2Biochemistry Laboratory: Cell Signaling and Pathologies, Research Unit: UR12ES08, Faculty of Medicine of Monastir, Tunisia

3Laboratory of Genetic, Biodiversity and Valorisation of Bioresources, LR11ES41, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia

4Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Team: Medicinal Chemistry and Natural Products, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia

5Laboratory of Bionanocomposites and Agrobiomaterials, Higher Institute of Biotechnology, Avenue Avicenne, 5000 Monastir, Tunisia

ARTICLE INFO

Article history:
Received 11 Jul 2016
Received in revised form 20 Jul, 2nd revised form 26 Jul, 3rd revised form 31 Jul 2016
Accepted 2 Aug 2016
Available online 11 Aug 2016

Keywords:
Euphorbia paralias L., Polyphenolic compounds, Antioxidant activity, Anti-α-glucosidase activity

ABSTRACT

Objective: To examine the potential antioxidant and anti-α-glucosidase inhibitory activities of Tunisian Euphorbia paralias L. leaves and stems extracts and their composition of total polyphenol and flavonoids.

Methods: The different samples were tested for their antiradical activities by using 2, 2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. In α-glucosidase activity, α-glucosidase (0.3 IU/mL) and substrate, 2,500 µmol/L p-nitrophenyl α-D-glucopyranoside were used; absorbance was registered at 405 nm.

Results: The leaves acetonic extract exhibited the strongest α-glucosidase inhibition [IC50 = (0.0035 ± 0.001) µg/mL], which was 20-fold more active than the standard product (acarbose) [IC50 = (0.07 ± 0.01) µg/mL]. Acetonic extract of the leaves exhibited the highest quantity of total phenolic [(95.54 ± 0.04) µg gallic acid equivalent/mg] and flavonoid [(55.16 ± 0.25) µg quercetin equivalent/mg]. The obtained findings presented also that this extract was detected with best antioxidant capacity [IC50 = (0.015 ± 0.01) µg/mL] against DPPH and a value of IC50 equal to (0.02 ± 0.01) µg/mL against ABTS. Positive relationship between polyphenolic content of the tested Euphorbia paralias L. leaves and stems extracts and its antioxidant activity (DPPH and ABTS) was detected. Elevated positive linear correlation was got between ABTS and total phenolic (R2 = 0.751).

Conclusions: The findings clearly demonstrate that the use of a polar solvent enables extraction of significant quantities of phenol compounds and flavonoids.

1. Introduction

Diabetes mellitus (DM) is an international metabolic disease described by elevated blood glucose levels. In 2013, 382 million of population in the world is living with DM, 90% of them were affected by type 2 diabetes, and the number is predicted to raise to 592 million by 2035 with the growth of urbanization, improvement of living standard and modifications of humans’ diet practice[1,2]. The usable synthetic medicines for the curing of DM mainly are pricey and engender dangerous side impacts[3,4]. The detection of medicinal plants for new therapeutic products is, thus, a considerable object for researchers. Mostly, the plant based medicines are biodegradable, safe, and inexpensive, having less side effects[5]. Many studies also suggested the application of medicinal plant extracts to antidiabetic treatments due to fewer side effects than those of synthetic drogues[6-10]. Another benefit is that natural compounds may be safely consumed in the quotidian regime, thereby decreasing the risk of DM[11].
pathogenesis of DM implies oxidative stress, antiradical treatment must have an interest value in its therapies. Several processes in animal examples of diabetes and diabetic sick people have tried to establish the docket of antioxidants on the treatment or prevention of diabetes aggravation[12]. Therefore, the search for antidiabetic and antioxidant drug components from plants has been appealing increasing attentiveness in latest years. Euphorbia paralias L. (E. paralias) is also known as Tithymalus paralias L.[13]. The species of Euphorbia, mostly have antileukaemic property applied extensively in popular medicine for different types of cancer like liver, stomach and uterus, used, also to treat sickness with inflammation, as a purgatory. The use of Euphorbia species in the remedy of skin illness and asthma has been postponed[14-16]. Previous pharmacological activities and also to check the therapeutic effects may be used for preliminary observations in the evaluation of these extracts were also tested using different assays. These assays in inhibition type were conducted

2.4. Chemical analysis

2.4.1. Total phenolics

The quantity of total phenolics in the four extracts prepared was detected following the protocol of Velioglu et al.[25] which uses Folin-Ciocalteu reagent. A volume of 100 µL of the extract (1 mg/mL) was moved into a hemolysis tube and 750 µL of Folin-Ciocalteu reagent was appended and blended. After incubation period (5 min at 25 °C), we added 0.75 mL of Na2CO3 (saturated sodium carbonate solution) to the concoction and then it was slowly mixed. After 90 min at 25 °C, the optical density was read at 725 nm using an UV-vis spectrophotometer. The total phenolic content of E. paralias extracts was manifested as µg gallic acid equivalents per milligram of dry weight (µg GAE/mg DW) by the calibration curve with gallic acid. We used a calibration curve which ranged from 0 to 250 µg/mL. \(R^2 = 0.99 \).

2.4.2. Total flavonoids

The Lamaison and Carnet procedure[26] was worn to establish the total flavonoid content of the E. paralias samples. Nearly 1500 µL of samples were supplemented to equal volumes of a solution of 2% AlCl3·6H2O. The mixture was loudly agitated. After incubation (10 min), the optical density was recorded at 367 nm. The total flavonoids tenor was manifested as µg quercetin/mg dry weight (mg QE/g DW), by the calibration curve of quercetin. We used a calibration curve which ranged from 0 to 50 µg/mL. \(R^2 = 0.99 \).

2.5. Antiradical activity

2.5.1. DPPH test

This assay seek the ability of the samples to trap the steady radical (DPPH) created in solution by yielding a hydrogen atom or an electron[27]. If the samples have the capability to snare the DPPH free radical, the first blue/purple solution will transform to a yellow color due to the formation of diphenylpicrylhydrazyl. Later 500 µL of each extract concentration was blended employing the equal volume of DPPH\(^{-}\) ethanolic solution. The optical density was read at 517 nm wavelength, after the incubation at 25 °C during 30 min. A blend of 500 µL of DPPH solution and 500 µL of ethanol was considered as a blank[28]. Reduction in optical density induced by the tested extracts was compared to the positive control BHT. IC\(_{50}\) values calculated signify the concentration needful to scavenge 50% of DPPH\(^{-}\) radicals. Findings were manifested in inhibition percentage at various extract concentrations (µg/mL). Inhibition of free radical DPPH in percentage was calculated like that:

\[
\text{Inhibition (\%)} = \left(\frac{\text{A}_{\text{control}} - \text{A}_{\text{extract}}}{\text{A}_{\text{control}}} \right) \times 100
\]

where \(A_{\text{control}} \) is the absorption of the control reaction (holding all reagent unless the test sample), and \(A_{\text{extract}} \) is the absorption of the extract tested.
2.5.2. ABTS test

Antioxidant activity was realized by using the ABTS⁺ free radical decolorization test provided by Re et al.[29] with a few modifications. Shortly, the preformed radical monocation of ABTS was produced by reacting 2.45 mmol/L K₂S₂O₈ with ABTS solution (7 mmol/L). After 15 h of rest in the obscure at ambient temperature, the solution was diluted with ethanol to obtain the absorption of (0.7 ± 0.2) units at 734 nm. Extracts were separately dissolved in ethanol to yield the next concentrations (from 0.015 mg/mL to 1 mg/mL). After that 0.01 mL of every concentration was added to 0.99 mL of diluted ABTS⁺. After incubation during 20 min, the optical density was read. The inhibition percentage of ABTS⁺ was obtained by the next formula:

\[\text{Inhibition} \% = \left(1 - \frac{\text{A}_{\text{control}} - \text{A}_{\text{extract}}}{\text{A}_{\text{control}}} \right) \times 100 \]

where \(\text{A}_{\text{control}} \) is the absorption of the control reaction (holding all reagent unless the test sample), and \(\text{A}_{\text{extract}} \) is the absorption of the extract tested.

2.6. α-Glucosidase inhibition assay

The method used in this activity was that of Tao et al.[30] with a few modifications. The α-glucosidase reaction mixture retained 250 μL of sample (different concentrations) in dimethylsulfoxide, 0.3 IU/mL α-glucosidase in phosphate buffer (pH 6.9) and 2.5 mmol/L (4-pNPG). The incubation was carried out during 15 min in a water bath at 37 °C. Control tubes regrouped just enzyme, substrate and dimethylsulfoxide. The positive controls contained acarbose instead of the samples species. The optical density of the resulting p-nitrophenol was detected at 405 nm and was examined straight to the activity of the enzyme. Every extract was carried out in triplicate. The inhibition percentage by acarbose and samples were studied using the next equation:

\[\text{Inhibition} \% = \left(\frac{\text{A}_{\text{control}}(t = 0 \text{ min}) - \text{A}_{\text{extract}}(t = 15 \text{ min})}{\text{A}_{\text{control}}(t = 0 \text{ min})} \right) \times 100 \]

where DO extract = DO control (t = 15 min), Acontrol – DO control, and Aextract – DO extract.

The IC₅₀, which means the concentration of the extract intended to inhibit 50% of the enzyme was examined for every extract.

2.7. Kinetics study of α-glucosidase

Lineweaver-Burk plot test was used to establish the method of inhibition of extracts. The kinetics was determined by using different concentrations of 4-p-nitrophenyl-α-D-glucopyranoside as a substrate in the attendance of different concentrations of samples. \(K_i \) show the equilibrium constant for the binding of extracts to α-glucosidase. The inhibition constant \(K_i \) value was determined from the secondary plots constructed using slopes or y-intercepts of Lineweaver-Burk plots. The initial rates of reaction were detected using calibration curves made using different concentrations of the substrate.

2.8. Statistical analysis

The findings were determined as the pass mark ± SE for minimum three experiments for every extract. The IC₅₀ (ABTS, α-glucosidase and DPPH) values were measured by linear regression analysis. The data were exposed to ANOVA, and Duncan’s multiple range test was worn to compare averages. Statistical analysis was executed with the SPSS statistical software program (SPSS v.16). \(P \) values < 0.05 were considered as significant.

3. Results

3.1. Total phenolics

According to Table 1 below, the polyphenol contents recorded in gallic acid equivalent in μg per mg of sample showed that the acetone samples of the leaves and the stems were rich in phenolic compounds [(95.54 ± 0.04) μg GAE/mg] and [(29.66 ± 0.08) μg GAE/mg], followed by chloroform extract of the leaves [(11.03 ± 0.03) μg GAE/mg] and the chloroform extract of the stems [(9.75 ± 0.01) μg GAE/mg].

3.2. Total flavonoids

The highest flavonoid content was found also in the leaves acetonic extract [(55.16 ± 0.25) μg QE/mg] followed by the stems acetonic extract [(26.25 ± 0.41) μg QE/mg] and (20.87 ± 0.01) μg QE/mg, respectively. The lowest value was shown with the leaves chloroform extract [(1.87 ± 0.04) μg QE/mg].

3.3. Antioxidant activity

3.3.1. DPPH test

The findings from the radical scavenger tests for all E. paralias samples are cited in Table 1 as IC₅₀ (μg/mL); IC₅₀ signify the concentration of the sample capable to trap moiety of the DPPH free radical existing in the test solution. The greatest results were got with the leaves acetonic extract [(IC₅₀ = (0.15 ± 0.09) μg/mL), the stems acetonic extract [(IC₅₀ = (0.05 ± 0.01) μg/mL], the leaves chloroformic extract [(IC₅₀ = (0.1 ± 0.01) μg/mL] and the stems chloroformic extract [(IC₅₀ = (0.15 ± 0.09) μg/mL], respectively. The BHT was used as standard in the in vitro antioxidant activity.
3.3.3. Relationship between anti-oxidant activity and flavonoid, phenolic contents

One of the objectives of this paper was to consider the correlation between antioxidant property and phenolic compounds of *E. paralias* samples. Correlation between the results of different antioxidant tests is shown in Figures 1 and 2. A positive linear correlation between antioxidant property and phenolic compounds of *E. paralias* was shown in Figures 1 and 2. A good correlation was equally reported for the ABTS test. The lowest correlation coefficients were between DPPH values and total flavonoid (R² = 0.495).

Table 1

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Total phenolic content (µg GAE/mg)</th>
<th>Total flavonoid content (µg QE/mg)</th>
<th>DPPH scavenging ability</th>
<th>ABTS scavenging ability</th>
<th>α-Glucosidase inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stems acetonic extract</td>
<td>29.66 ± 0.08</td>
<td>26.25 ± 0.41</td>
<td>0.05 ± 0.01</td>
<td>0.04 ± 0.02</td>
<td>0.006 ± 0.001</td>
</tr>
<tr>
<td>Leaves acetonic extract</td>
<td>95.54 ± 0.04</td>
<td>55.16 ± 0.23</td>
<td>0.02 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>0.0035 ± 0.001</td>
</tr>
<tr>
<td>Stems chloroformic extract</td>
<td>9.75 ± 0.01</td>
<td>20.87 ± 0.01</td>
<td>0.15 ± 0.09</td>
<td>0.10 ± 0.02</td>
<td>0.035 ± 0.01</td>
</tr>
<tr>
<td>Leaves chloroformic extract</td>
<td>11.03 ± 0.03</td>
<td>1.87 ± 0.18</td>
<td>0.10 ± 0.03</td>
<td>0.09 ± 0.01</td>
<td>0.015 ± 0.009</td>
</tr>
<tr>
<td>BHT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acarbose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Different letters in the same column show significant differences (P < 0.05). IC50 values are shown as the average ± SD of three independent experiments.

Table 2

<table>
<thead>
<tr>
<th>Inhibitors (I)</th>
<th>Inhibition mode</th>
<th>Vmax (µmol/L)</th>
<th>Km (µmol/L)</th>
<th>Kmapp (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I = 0</td>
<td>-</td>
<td>0.14</td>
<td>5.88</td>
<td>-</td>
</tr>
<tr>
<td>I = 150 µg/mL</td>
<td>Competitive inhibition</td>
<td>0.14</td>
<td>6.66</td>
<td></td>
</tr>
<tr>
<td>I = 300 µg/mL</td>
<td>Competitive inhibition</td>
<td>0.14</td>
<td>9.09</td>
<td></td>
</tr>
<tr>
<td>I = 600 µg/mL</td>
<td>Competitive inhibition</td>
<td>0.14</td>
<td>16.66</td>
<td></td>
</tr>
</tbody>
</table>

3.4. α-Glucosidase inhibition assay

The IC50 values for the α-glucosidase inhibitory activities of *E. paralias* samples and acarbose as the standard are summarized in Table 1. As shown in this table, all extracts exhibited an important α-glucosidase inhibition. The leaves acetic extract [IC50 value of (0.0035 ± 0.001) µg/mL] possessed the highest inhibition followed by the stems acetic extract [IC50 value of (0.006 ± 0.001) µg/mL]. The stems chloroformic sample and the leaves chloroformic sample also exhibited considerable α-glucosidase inhibition [IC50 = (0.0035 ± 0.01) µg/mL and (0.015 ± 0.009) µg/mL, respectively]. This biological activity of all *E. paralias* samples was higher than that of acarbose [(0.07 ± 0.01) µg/mL]. The α-glucosidase inhibitory property of *E. paralias* samples was analyzed here, for the first time.

3.5. Kinetics of α-glucosidase activity

The kinetic studies were performed using Lineweaver-Burk plot analysis. For this purpose, the leaves acetic extract which presented the lower values of IC50 = (0.0035 ± 0.001) µg/mL was chosen to give the mode of inhibition (uncompetitive, non-competitive or competitive) of α-glucosidase. In the enzyme kinetic studies, the rate of the enzyme activity was studied at three different concentrations of 4-pNPG (10,000 µmol/L, 5000 µmol/L, 2500 µmol/L, 1250 µmol/L and 625 µmol/L). The Lineweaver-Burk plots exhibited that this extract inhibited α-glucosidase in a competitive manner (Figure 3). In effect, the plots intersected the Y-axis.

Thus, the addition of the leaves acetic extract in the reaction medium resulted in a modification in the Michaelis-Menten constant (Km) while keeping the same value of maximum velocity (Vmax) of α-glucosidase (Vmax = 0.14 ΔDO/min). The values of the kinetic parameters of α-glucosidase in the absence and presence of the leaves acetic sample are summarized in Table 2.
that the methanolic extract presented total flavonoids content in the range of (55.35 ± 2.02) mg QE/g. This value is very close to that found for the E. paralias leaves acetone extract [55.16 ± 0.25 mg QE/g]. Another study has shown that the total polyphenols content of Euphorbia rayleana whole plant varies from (30.97 ± 0.46) mg GAE/g to (63.68 ± 0.43) mg GAE/g, while the dosage of flavonoids in the plant varies from to (18.89 ± 0.41) mg QE/g to (47.47 ± 0.71) mg QE/g[36].

Concerning the biological activity, one study was found testing the antioxidant activity of E. paralias samples, using the DPPH method; thus, the Egyptian E. paralias ethanolic extract showed an interesting antioxidant activity (81.1%) and the water extracts of this plant presented a moderate antioxidant activity (51.8%)[37]. While in the ABTS+ assay, it wasn’t tested before, and confirmed the encouraging antioxidant property of the leaves acetone extract ([20.00 ± 0.01] µg/mL). The E. paralias acitone extracts had an interesting ability to quench DPPH and ABTS radicals due to the presence of phenolic products with hydroxyl group tied to the aromatic ring structures[38]. It was considered that these acetone extracts were a natural origin of strong natural antioxidant property. Its great total polyphenols and total flavonoids contents values denoted that the machinery of anti-radical action of these samples was hydrogen donor and they would finish the oxidation process by changing free radicals to the steady shape. The polyphenols in extracts are probably responsible for the high anti-radical property of E. paralias samples. However, this activity is not limited to phenolics content but also in the presence of other antioxidant secondary metabolites. These different correlation coefficients support the necessity to use multitude of methods to test antioxidant activity of plants. For the α-glucosidase inhibitory activity of E. paralias extracts, few studies have tested the anti-α-glucosidase activity of the species belonging to the genus Euphorbia. Thus, three extracts of Euphorbia hirta whole plant (aqueous, hydroalcoholic, and methanolic) showed values of IC₅₀ of the order of 0.213 mg/mL, 0.146 mg/mL and 0.078 mg/mL, respectively[35]. These values are lower than those found by our extracts, ranged from 3.5 µg/mL to 35 µg/mL. The inhibition type of the most active extract (leaves acetone extract) was determined and it is a competitive inhibition with value of Kᵢ (120 µg/mL). Sheliya et al.[35] investigated the kinetics of Euphorbia hirta methanolic extract showing the more interesting value of IC₅₀ = 0.078 mg/mL; this extract showed a mixed non-competitive inhibition.

This work assumes to discuss the potential of extract of E. paralias (leaves and stems) of Tunisia as sources of natural α-glucosidase inhibitors and antioxidants. The richness of leaves in bioactive compounds (polyphenolic and flavonoids) was noted.

Two anti-radical tests were successfully conducted so as to test the anti-radical property of the plant samples, with similar results being obtained. The leaves and the stems acetone extracts demonstrated potent antioxidant properties and α-glucosidase inhibition, while the leaves and the stems chloroformic samples presented moderate inhibitory property versus ABTS and DPPH radicals. The presence of phenolic compounds in our samples seems to be the good reason for the antioxidant activities and α-glucosidase inhibition.

Conflict of interest statement

We declare that we have no conflict of interest.
Acknowledgments

This research was supported by the Ministry of Higher Education and Scientific Research, MHSSR of Tunisia (Grant No. 11/TM06).

References

