Degradation study of different brands of paracetamol by UV spectroscopy

Safila Naveed1*, Humera Ishaq2, Sheeba Urooj1

1Faculty of Pharmacy, Jinnah University for Women, Karachi, Pakistan
2Faculty of Pharmacy, Hamdard University, Karachi, Pakistan

1. Introduction

One of the most common symptoms is pain and this is one of the most frequent reasons why people seek medical care. Therefore, it is not surprising that the analgesics are among the most widely used categories of drug. Hence, for the treatment of inflammation and pain, paracetamol is used, and chemically paracetamol (4-hydroxyacetanilide) is used. Paracetamol is a weak peripheral cyclooxygenase inhibitor and from the inhibition of prostanoid synthesis in the central nervous system, analgesic effect of paracetamol may arise. Antipyretic effect of paracetamol is reported to inhibit prostaglandin synthesis at the level of the hypothalamus causing alteration in body temperature[1].

UV spectrophotometric method was used due to less equipment cost and economical maintenance advantages. By the help of this technique, the UV absorbance spectra are measured at 200–380 nm. In accordance with the International Conference on Harmonization guideline, the forced degradation state of active pharmaceutical substance includes acidic, basic and photolytic conditions. For the estimation of forced degradation of a pharmaceutical ingredient, acid/base stress testing is performed. By exposure to acidic or basic medium over time to its chief degradation products, this test involves degradation of a drug substance. Acid/base hydrolysis take place in labile carbonyl functional groups which are amides (lactams), esters (lactones), aroyl amines, imides, imines alcohols and carbamates. The technique is employed to recognize the raise in the degradation product and the consequent loss of pharmaceutical active component i.e. forced degradation is capable to indicate that the selected technique is a representative of stability[2].

The objective of this study was to analyze forced degradation studies by treating the different brands of bromazepam under hydrolytic (acidic and basic), photolytic and thermal stress conditions.
conditions, by using spectrophotometer, as defined under International Conference on Harmonization guideline Q1A (R2). Because of economical maintenance advantage and less equipment cost, it is generally preferred over other methods.

We already performed these types of degradation studies which are useful for pharmacy profession[3-6].

Basic parameters for drug degradation studies are acid/base stress testing, humidity and with temperature, photo degradation. Forced degradation of drug was performed with acidic and basic condition contact to its basic (monomer) degradation product. Degradation of drug product obtained by carbonyl functional groups include alcohol, carbamates, amides (lactam), aryl amine esters (lactones), imines and imides then hydrolysis of acid/base is carried out.

Forced degradation of drug substance in thermal/humidity environment was performed by exposing the drug product over long time which results in forceful degradation of drug substance to its primary components. By this process, testing of thermal/humidity stress degradation is carried out.

Forced degradation of drug substance in UV light was performed by exposing the drug substance to UV light. Drug substance which are naturally and synthetically polymer prepared become crack on exposing to UV light.

2. Materials and methods

2.1. Experimentation

Paracetamol brands used were panadol 500 mg tablets of GlaxoSmithKline Pakistan Limited, disprol 500 mg tablets of Reckitt benckiser Pakistan Limited and calpol 500 mg tablets of GlaxoSmithKline Pakistan Limited. Analytical reagent, 1 mol/L HCl and 1 mol/L NaOH, were used and water used was deionized filtered and double distilled. Pyrex type stirrer, measuring cylinder, pipette, funnel, beaker and volumetric flask were used. The glass ware after washing with chromic acid rinsed with water is freshly laboratory prepared, double distilled or deionized. Instruments, UV lamp, weighing balance, spectrophotometer and water bath were used in this study.

2.2. Preparation of working solutions

2.2.1. Preparation of NaOH

In 100 mL volumetric flask, accurately 40 g NaOH was dissolved and to make up the volume up to 100 mL, deionized water was added.

2.2.2. Preparation of HCl

A total of 8.36 mL hydrochloric acid (37%; 12 mol/L) was took accurately analytical grade in 100 mL volumetric flask to make up the volume up to 100 mL by adding deionized water.

2.2.3. Preparation of paracetamol solution

The tablets of each of the brands were weighed individually. Each brand of tablets was triturated in mortar pestle individually. Powder was equal to 20 mg of paracetamol. PDL (23.67 mg), DPL (22.90 mg), CPL (24.65 mg) were accurately weighed. In the 100 mL volumetric flask, all of 3 brands powders transferred individually. These powder samples were dissolved and shaken with water and finally more water was added to make up the volume up to 100 mL respectively for each sample. A total of 20 mg/100 mL concentration solution was preferably obtained. By using spectrophotometer at 294 nm wavelength individually all brands absorbance were determined.

2.3. Procedure for forced degradation studies

2.3.1. For acid

Forced degradation of drug substance in acidic media was performed by taking 5 mL of 20 mg/100 mL of PDL, DPL and CPL in 3 separated test tubes, then 5 mL of 1 mol/L HCl was added in each test tube. The sample was left for 30 min. Solution was transferred to a separated cuvette after the time period completion and UV absorbance of the solution was measured at the 294 nm wavelength.

2.3.2. For base

Forced degradation of drug substance in basic media was performed by taking 5 mL of 20 mg/100 mL solution of PDL, DPL and CPL in 3 separated test tubes, then 5 mL of water was added in each test tube and the sample was left for 30 min, and then UV absorbance of solution was measured at 294 nm wavelength.

2.3.3. For UV light

Forced degradation of drug substance in UV light was performed by taking the 5 mL of 20 mg/100 mL solution of PDL, DPL and CPL, then 5 mL of water was added in each test tube and these test tubes were exposed to UV light for 30 min, and then UV absorbance of solution was measured at 294 nm wavelength.

2.3.4. For heat

Forced degradation of drug substance in thermal/humidity environment was performed by taking 5 mL of 20 mg/100 mL solution of PDL, DPL and CPL, then 5 mL of water was added in each test tube and these test tubes were exposed to UV light for 30 min, and then UV absorbance of solution was measured at 294 nm wavelength.

2.4. Statistical analysis

The SPSS 19.0 version software was used for statistical analysis.
of degradation of paracetamol and the Two-way ANOVA test was applied.

3. Results

We have conducted the degradation study on three brands of paracetamol using disprol 500 mg tablets of Reckitt benckiser Pakistan Limited, panadol 500 mg tablets of GlaxoSmithKline Pakistan Limited and calpol 500 mg tablet of GlaxoSmithKline Pakistan Limited. When paracetamol brands were treated with the 1 mol/L HCl, it showed availability of different brands. When paracetamol brands were treated with the 1 mol/L NaOH drugs, it showed the increased availability and absorbance respectively. When subjected to heat for 30 min, paracetamol showed no changes. When exposed to UV light, negligible changes had been observed respectively. Table 1 represents the UV absorption of different brands of paracetamol before and after exposing to the degradation environment. We concluded according to our results that when the PDL introduced into acidic medium 1 mol/L HCl, it showed degradation to minor extension that is 99.543%; DPL showed degradation to moderate extension that is 99.672%; CPL also gave greater results on exposure to acidic medium (100%) respectively. Similarly on exposure to 1 mol/L NaOH basic medium, the PDL showed the moderate (100.388%) degradation whereas DPL showed degradation to minor extension that is 99.871% while CPL gave moderate results on exposure to basic medium (100.094%) respectively. When PDL (99.457%), DPL (99.389%) and CPL (99.934%) heated for 30 min and evaluated for degradation studies, it showed negligible changes in concentration respectively for degradation studies. When PDL (99.809%), DPL (99.587%) and CPL (99.680%) exposed to UV light for 30 min and evaluated for degradation studies, it also showed minor changes in concentration respectively for degradation studies. Results of degradation studies are given in Tables 1 and 2.

Table 1
Absorbance of different brands of paracetamol in percentage.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDL Before</td>
<td>99.669</td>
<td>99.834</td>
<td>100.497</td>
<td>100</td>
</tr>
<tr>
<td>Acid</td>
<td>99.544</td>
<td>100.228</td>
<td>100.293</td>
<td>100</td>
</tr>
<tr>
<td>Base</td>
<td>100.388</td>
<td>100.032</td>
<td>99.644</td>
<td>100</td>
</tr>
<tr>
<td>Heat</td>
<td>99.457</td>
<td>99.330</td>
<td>101.213</td>
<td>100</td>
</tr>
<tr>
<td>UV</td>
<td>99.809</td>
<td>100.032</td>
<td>100.222</td>
<td>100</td>
</tr>
<tr>
<td>CPL Before</td>
<td>99.671</td>
<td>100.033</td>
<td>100.330</td>
<td>100</td>
</tr>
<tr>
<td>Acid</td>
<td>100.000</td>
<td>100.131</td>
<td>99.869</td>
<td>100</td>
</tr>
<tr>
<td>Base</td>
<td>100.095</td>
<td>99.779</td>
<td>100.126</td>
<td>100</td>
</tr>
<tr>
<td>Heat</td>
<td>99.935</td>
<td>100.195</td>
<td>99.870</td>
<td>100</td>
</tr>
<tr>
<td>UV</td>
<td>99.681</td>
<td>100.223</td>
<td>100.160</td>
<td>100</td>
</tr>
<tr>
<td>DPL Before</td>
<td>99.672</td>
<td>100.033</td>
<td>100.295</td>
<td>100</td>
</tr>
<tr>
<td>Acid</td>
<td>99.673</td>
<td>100.393</td>
<td>100.000</td>
<td>100</td>
</tr>
<tr>
<td>Base</td>
<td>99.872</td>
<td>100.449</td>
<td>99.680</td>
<td>100</td>
</tr>
<tr>
<td>Heat</td>
<td>99.389</td>
<td>100.129</td>
<td>100.482</td>
<td>100</td>
</tr>
<tr>
<td>UV</td>
<td>99.588</td>
<td>100.349</td>
<td>100.095</td>
<td>100</td>
</tr>
</tbody>
</table>

4. Discussion

Our hypothesis was that when all the brands of paracetamol were exposed to different degradation parameters, there will be no degradation in the active ingredient of the brands of paracetamol. The brands i.e. CPL, PDL and DPL when they come in contact with different degradation parameters (before, acid, base, heat and UV) according to statistical analysis showed significant values $P < 0.05$, which indicated that there was no degradation in any of the brand.

According to specification of United State Pharmacopoeia, the content official limit of not less than (98%) and not more than (101%) the labeled amount. We have concluded from our studies that paracetamol more degrades in acidic and basic medium. Whereas little degradation also arises with time. While in UV and heat paracetamol, it shows negligible degradation effect.

Conflict of interest statement

We declare that we have no conflict of interest.

References

