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ABSTRACT

Coagulation process control is an essential operation in water treatment
plants. It is a challenging control problem due to the nonlinear and phy-
sicochemical nature of the coagulation process. The paper presents the
application of the Wiener model predictive control (WMPC) algorithm to
a coagulation chemical dosing unit for water treatment plants in order to
keep the surface charge and pH level of the dosed water at the reference
trajectory set by the operator of the plant. Wiener models with di¤erent
nonlinear estimators are compared and evaluated. A Wiener model with
a wavelet network estimator presented the highest goodness of �t (98%),
and was thus selected as the best prediction model. Simulation results
show that the proposed control strategy has good set-point tracking, as
well as noise and disturbance rejection performances.

c2016 LESI. All rights reserved.

1. Introduction

The coagulation process control is a challenging problem in the water and wastewa-
ter, paper and pulp, beverage and brewery industries where the need for clean water is
imperative to achieve the organisation goals and objectives. This could be attributed to
the complex and nonlinear behaviour of the process [1, 11]. Several approaches have been
proposed in the literature for the control of the process in the water treatment plants in
particular. Traditionally, visual inspection and reference table are methods used by plant
operators to evaluate the quality of the �nished water. The operators observe the water
and make adjustment to increase, maintain or decrease the coagulant dosages based on
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their personal judgment and experience. This approach does not support production of
adequate and cost e¤ective water treatment operation. Moreover, jar tests are basically
routine laboratory procedures to establish the optimum dosage of coagulation chemicals
for water treatment. A typical jar test apparatus consists of a six variable-speed paddle
gang stirrers with impellers, 1.5 litres square glass beakers or jars and sample tap or draw-
o¤ siphoning tube. The jar tests could be suitably used to select primary and secondary
coagulants, perform mixing energy and time studies, estimate the settling velocities for
sedimentation, basin sizing and evaluate sludge recycling e¤ect. However, jar tests are
time-consuming and labour intensive. It does not have the ability to be incorporated into
an online monitoring and automatic control scheme for coagulation process [9].
Another common approach is to develop prediction process models for coagulation che-

mical dosages using data collected from water treatment plants. The input variables of
these models are obtained from the operational and physical water quality parameters of
the raw water �owing into the plant. These parameters are measured by means of ap-
propriate sensors before the water enters the rapid mixing tank or dosing point. These
models are developed using statistical or regression analysis techniques [7]. Alternatively,
intelligent techniques such as arti�cial neural networks, adaptive neuro-fuzzy inference
scheme, fuzzy logic and genetic programming techniques are suitably used to model the
nonlinear relationship between the input and output variables of the prediction models
[2, 11, 12, 15�18]. Previous studies have shown that these intelligent techniques exhibit
lesser prediction errors when compared to the regression based model [7]. With the deve-
lopment of these empirical models, feedforward controllers are implemented to control the
�owrates of the dosing pumps with satisfactory results [3]. Automatic control actions of
the coagulation chemical dosage system could also be provided using the feedback control-
lers. In this approach, streaming current detector and pH meter are required to achieve
feedback of the measured variables to the control system. The streaming current detector
provides a direct measurement of the average colloidal surface charge while the pH meter
measures the pH or degree of hydrogen ions concentration in the raw water. For e¤ective
implementation of a feedback control scheme, the average colloidal surface charge and pH
of the water after coagulation must be controlled to follow the reference trajectory set
by the plant operators and have robust performance when operational disturbances are
acting on the process [1], [13] and [7].
Model predictive control (MPC) is a widely used control algorithm in the process in-

dustries. It involves the use of a dynamic model to predict and optimise process perfor-
mances. MPC has capability to handle system constraints e¤ectively and could be used
with multiple-input, multiple output systems where the traditional control scheme may
prove inadequate. Most processes are nonlinear in nature, whereas most MPC software
available are based on linear dynamic model. Thus, the MPC may not work e¤ective with
highly nonlinear processes. One of the identi�ed approaches to approximate any nonlinear
process with high precision is to use Wiener model. Wiener model has a structure that
consists of the cascade connection of a linear invariant (LTI) system followed by a static or
memoryless nonlinearity. The application of the Wiener model to nonlinear processes have
been discussed and reported in [8, 14]. The most commonly used nonlinearity blocks will
be applied in this study to identify a Wiener model from the input-output data generated
from a nonlinear �rst principles simulation model of the coagulation process in a rapid
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mixing tank reactor. The simulation model is developed based on the operational data
collected from the Rietvlei water treatment plant, South Africa. The identi�cation results
of the nonlinearity blocks are compared to determine the best estimator among them.
The best identi�ed Wiener model is applied in the MPC algorithm. The performances of
the Wiener model predictive control scheme are examined in terms of its ability to track
changes in reference trajectory and reject disturbances after a simulation period of 48
hours.

2. Materials and methods

2.1. Description of the Rietvlei water treatment plant
The Rietvlei water treatment plant was built between 1932 and 1934, near Irene, City of

Tshwane, South Africa. The production capacity of the plant is approximately 40 million
litres per day. Fig. 1 illustrates the process train of the Rietvlei water treatment plant. A
pumping station and transport system is available to lift water from the dam and convey it
to the treatment plant. Raw water then �ows through the intake pipe into the coagulation
chemical dosing unit. The chemical dosing unit consists of a concrete mixing tank with
inlet and outlet channels. Four metering pumps are used for dosing the chemicals into
the in�uent raw water of which two dosing pumps are active while the other two are on a
standby or redundant position. One of the dosing pumps feeds a polyelectrolyte solution
while the other feeds a ferric chloride solution into the concrete mixing tank. The poly-
electrolyte solution known as sud�oc 3835, is a blend of epichlorohydrin/dimethylamine
(polyamine) and aluminium chlorohydrate. The adoption of organic polyelectrolytes as
part of the water treatment process in South African waterworks is widely established
due to their higher e¢ ciency and lower cost when compared to the traditional or inorga-
nic coagulants. The pumps are controlled by programmable logic controllers (PLC) that
are connected to the supervisory control and data acquisition (SCADA) system of the
plant. The dosage quantities of coagulation chemicals depend on the in�uent �owrate of
the raw water �owing into the water treatment plant. Calcium hydroxide (hydrated lime)
in slurry form is also added to the mixing tank using a diaphragm pump to stabilise the
water and adjust the pH value to a set point value between 8.1 and 8.3.
The chemically dosed water �ows out slowly and evenly from the rapid mixing tank into

a series of ba ed or �occulation channels to grow the �ocs. The water from the ba ed
channels then �ow into the Dissolved Air Floatation/Filtration (DAFF) unit. The �ltered
water from the DAFF then �ows into the Granular Activated Carbon (GAC) �ltration
unit to eliminate any foul odour, taste and colour caused by the natural organic matter.
Thereafter, the water from the GAC �ows into the chlorination chamber. Here, chlorine
gas is added to the water to disinfect the clean water before it is pumped to the storage
reservoirs and distributed to end users [4, 5].

31



O. Bello et al./ Med. J. Model. Simul. 05 (2016) 029-045

Fig. 1 �Process �ow diagram of the Rietvlei water treatment plant, City of Tshwane.

2.2. Theoretical Modelling
The general chemical reactions in the mixing tank reactor in Fig. 2 are written as [5] :

2 (C5H12ONCl)n + 2Al2Cl (OH)5 + 2Ca (HCO3)2 !
2 (C5H12ON

+)n + 4Al (OH)3 + 2OH
� + 2CaCl2 + 4CO2

(1)

2FeCl3 + 3Ca(HCO3)2 ! 2Fe(OH)3 + 3CaCl2 + 6CO2 (2)

Ca(HCO3)2 + Ca(OH)2 ! 2CaCO3 + 2H2O (3)

Chemical reactions in (1), (2) and (3) take place simultaneously. Therefore, the overall
chemical equation becomes :

2(C5H12ONCl)n + 2Al2Cl(OH)5 + 2FeCl3 + Ca(OH)2 + 6Ca(HCO3)2 !
2(C5H12ON

+)n + 2OH
� + 2Fe(OH)3 + 4Al(OH)3 + 5CaCl2 + 10CO2 + 2CaCO3 + 2H2O

(4)

The reaction invariants (4) are [(C5H12ON
+)n], [Al

3+], [Fe3+], [Ca2+], [H+],
�
HCO�3

�
,

[OH�],
�
SO2�4

�
and

�
CO2�3

�
. However,

�
SO2�4

�
and

�
CO2�3

�
ions present in the system do

not take part in the neutralisation reactions. Therefore, the electroneutrality equation of
the reaction for equation (4) is expressed as :

��
C5H12ON

+
�
n

�
+
�
Al3+

�
+
�
Fe3+

�
+
�
Ca2+

�
+
�
H+
�
=
�
HCO�3

�
+
�
OH�� (5)

Rewriting (5) gives :
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�
HCO�3

�
�
��
C5H12ON

+
�
n

�
�
�
Al3+

�
�
�
Fe3+

�
�
�
Ca2+

�
=
�
H+
�
�
�
OH�� (6)

Let the di¤erence of the ionic concentrations be expressed as :

X =
�
HCO�3

�
�
��
C5H12ON

+
�
n

�
�
�
Al3+

�
�
�
Fe3+

�
�
�
Ca2+

�
(7)

Where

X = [H+]� [OH�] (8)

Assuming that there is perfect mixing in the tank reactor, the relationship between the
ionic concentrations of the e uent and input concentrations using the material balance
equations can be expressed as :

V
d [(C5H12ON

+)n]

dt
=
h��

C5H12ON
+
�
n

�
in

i
qa �

��
C5H12ON

+
�
n

�
qout (9)

V
d [Al3+]

dt
=
�
Al3+in

�
qa �

�
Al3+

�
qout (10)

V
d [Fe3+]

dt
=
�
Fe3+in

�
qb �

�
Fe3+

�
qout (11)

V
d [Ca2+]

dt
=
�
Ca2+in

�
qc �

�
Ca2+

�
qout (12)

V
d
�
HCO�3

�
dt

=
�
HCO�3 in

�
qin �

�
HCO�3

�
qout (13)

Where [(C5H12ON
+)n] is the polyamine ionic concentration at the mixing tank outlet,�

((C5H12ON
+)n)in

�
the polyamine ionic concentration at the mixing tank inlet, [Al3+]

is the aluminium ionic concentration at the mixing tank outlet,
�
Al3+in

�
aluminium ionic

concentration at the mixing tank inlet, [Fe3+] is the ferric ionic concentration at the
mixing tank outlet,

�
Fe3+in

�
ferric ionic concentration at the mixing tank inlet, [Ca2+]

calcium ionic concentration at the mixing tank outlet,
�
Ca2+in

�
calcium ionic concentration

at the mixing tank inlet,
�
HCO�3

�
bicarbonate ionic concentration of the e uent stream,�

HCO�3;in
�
bicarbonate ionic concentration of in�uent stream, qa �ow rate of sud�oc 3835

solution, qb �ow rate of ferric chloride solution, qc �ow rate of hydrated lime, qout �ow rate
of the e uent stream, qin �ow rate of the in�uent stream, V volume of mixing tank, [H+]
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hydrogen ions concentration, [OH�] hydroxide ions concentration and km dissociation
constant of water.
Adding (9) to (12) and then subtract the sum from (13) gives :

V
d[HCO�3 ]

dt
� V

d[(C5H12ON+)
n
]

dt
� V

d[Al3+]
dt

� V
d[Fe3+]
dt

� V
d[Ca2+]

dt
=
�
HCO�3 in

�
qin��

((C5H12ON
+)n)in

�
qa �

�
Al3+in

�
qa �

�
Fe3+in

�
qb �

�
Ca2+in

�
qc+

[(C5H12ON
+)n] qout + [Al

3+] qout+
[Fe3+] qout + [Ca

2+] qout �
�
HCO�3

�
qout

(14)

The material balance expression of the mixing tank reactor yields :

V
dX

dt
=
�
HCO�3 in

�
qin�

h��
C5H12ON

+
�
n

�
in

i
qa�

�
Al3+in

�
qa�

�
Fe3+in

�
qb�

�
Ca2+in

�
qc�X:qout

(15)

Thus, (4.15) is expressed as :

V
dX

dt
=
�
HCO�3 in

�
qin�

�h��
C5H12ON

+
�
n

�
in

i
+
�
Al3+in

��
qa�

�
Fe3+in

�
qb�

�
Ca2+in

�
qc�X:qout

(16)

The dissociation equation for water is

�
H+
�
:
�
OH�� = kw = 10

�14 (17)

Substituting (8) into (17) gives a quadratic expression :

[H+]2 �X
�
H+
�
� kw = 0 (18)

The solutions of the equation (4.18) are written as :

If X > 0; then [H+] = X+
p
X2+4kw
2

= X
2
:
�q

1 + 4kw
X2 � 1

�
If X = 0; then [H+] =

p
kw

If X < 0; then [H+] = X�
p
X2+4kw
2

= �X
2
:
�q

1 + 4kw
X2 + 1

� (19)

The concentration of the hydrogen ions [H+] may be expressed in the logarithmic
function as :

pH = � log
�
H+
�

(20)
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The expression for the surface charge of the raw waters is obtained as described in
section 3.1.

� = [(2=�)n"�T ]1=2 sinh 1:15 (pH0 � pH) (21)

Where � is the surface charge , � is the Boltzmann constant, T is the temperature, "
refers to the relative dielectric permittivity, pH0 PH at point of zero charge and n ionic
strength.
From (12), (20) and (21), the dynamics of the chemical dosing unit is formulated. The

surface charge and pH are the controlled output variables while the coagulant �ow rate
(qa), co-coagulant �ow rate (qb) and pH adjustment chemical �ow rate (qc) are the control
input variables of the model.

Fig. 2 �Mixing tank reactor for the coagulation chemical dosing unit.

2.3. Identi�cation with Wiener models
Wiener model consists of a linear dynamic system G followed by a static nonlinearity

f as shown in Fig. 3. The input u and the output y are measurable, while the states of
the models are denoted by x which can be observed. For the linear dynamic system of the
Wiener model structure, it could be written as :

x (t) = G (q; �)u (t) (22)

Similarly, the nonlinearity part is expressed as

y (t) = f (x (t) ; �)u (t) (23)

By combining (22) and (23) together, the output of the Wiener model structure is :

y (t) = f (G (q; �)u (t) + v (t) ; �) + e (t) (24)
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Fig. 3 �Wiener model structure.

The linear dynamic system that shows the relationship between the input and the
output could be represented in the discrete state-space form as [10] :

� (k + 1) = A� (k) +Bu (k)
y (k) = C� (k) +Du (k)

(25)

where � is the state vector, consisting of n state variables. a, B and C are system
matrices. The nonlinear block is static and thus a real-valued function of the state va-
riables. The general structure of the nonlinear block can be expressed using the function
expansion with basis functions and parameters :

y =

nbX
i=1

fiBi (x) (26)

where Bi (x) is the basis function. The commonly used basis functions for the nonlinear
blocks are :
Power Series :

Bi (x) = xi i = 0; 1; 2 : : : ; nb (27)

where nb is the number of input time steps.
Chebyshev polynomials :

Bj (xj) =

8>>>><>>>>:
0 if (x � xi�1)�

x�xi�1
xi�xi�1

�
if (xi�1 � x � xi)�

xi+1�x
xi+1�xi

�
if (xi � x � xi+1)

0 if (xi+1 � x)

(28)

Piecewise polynomial :

Bk =
1

1 + e�(�ok+x�1k)
(29)
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where �ok and �1k are internal parameters of the sigmoid function that determines the
position of the transition from 0 to 1 and how fast.
Wavelets :

Bi;j (k) =
1p
2i
 

�
x� 2ij
2i

�
(30)

where i is a scaled parameters, j is the dilation parameter and y is the mother wavelets.
The goal of identi�cation using Wiener model is to estimate the two parameters, � and

�, using the measurements of the input u and the output y to achieve the best model for
the process under consideration. When the parameters � and �, and the given input u are
known, then the predicted output, ŷ (k; �; �) could be estimated. In order to estimate the
quality of a model, the predicted output ŷ (k) and measured output y are compared using
a prediction error criterion. The prediction error criterion for this purpose is stated as :

Fig. 4 �Block diagram of WMPC scheme.

VN (�; �) =
1

N

NX
k=1

(y (k)� ŷ (k; �; �))2 (31)

where N is the number of data.
The implication of (31) is that the best model has the minimal value of VN (�; �) which

depends on the optimal estimate of these two parameters [10].

2.4. Wiener model predictive control scheme
MPC scheme based on the Wiener model is presented in this study. MPC basically

uses the dynamic model of the plant to predict and optimise the future behaviour of the
process. At each control interval, the MPC algorithm computes a sequence of future input
control moves over a control horizon M , in order to optimise the future response of the
plant. The optimisation of the plant behaviour is achieved by minimising an objective
function based on a desired output trajectory over a prediction horizon P . Only the �rst
value of the input control move sequence is applied into the plant others are discarded,
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then the horizon is moved one step towards the future, and the optimisation process is
repeated. The objective function can be written as :

J =
PX
i=0

ŷk+ijk � rk+i
2
Q(i)

+
M�1X
i=0

uk+ijk2S(i) + M�1X
i=0

�uk+ijk2R(i) (32)

where ŷk+ijk represents the prediction, made at time k, of the output at time k+ i, rk+i
is the value of the reference at time k + i and uk+ijk and �uk+ijk are the control input
and control input increment, computed at time k, at time k + i respectively. Q (i), S (i)
and R (i) are positive semi-de�nite diagonal weighting matrices, and kxkw =

p
xTWx

is the weighting 2-norm of vector x. The prediction horizon P , control horizon M , the
weighting matrices are design parameters of the MPC that are tuned to obtain desired
performances.
In formulating the MPC algorithm, constraints on the process due to the limited range

and dynamic response of actuators, operational, safety, economic or environmental factors
are taking into consideration. The constrained optimisation problem solved in the MPC
algorithm is stated as [8] :

min|{z}
�u

J (k) (33)

subject to :

uimin � uik � uimax
�uimin � �uik � �uimax
yimin � yik � yimax

(34)

where i represent the ith component of the corresponding vector. The WMPC scheme
in Fig. 4 is implemented by using the identi�ed Wiener model as a replacement for the
internal model employed in the standardMPC algorithm for predicting the future response
and optimisation.
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Table 1 �Process modelling variables.

Variable Symbols Values and units
Polyamine and aluminium [(C5H12ON

+)n + [Al
3+]] 0.0001 mol/L

ions concentration
Ferric ions concentration [Fe3+] 0.0001 mol/L
Calcium ions concentration [Ca2+] 0.0001 mol/L
Bicarbonate ion concentration

�
HCO�3

�
0.0001 mol/L

Hydrogen ion concentration [H+] 10�7 mol/Litre
Coagulant �ow rate qa 0.14 Litres/s
Hydrated lime �ow rate qb 0.7 Litres/s
In�uent water �ow rate qin 462.96 Litres/s
Tank Volume V 8000 Litres
Dissociation constant of water Kw 10�14

Temperature T 298 K
electron charge e 1.6�10�19 C
Ionic strength n 50�106 mol/cm3
Relative dielectric permittivity " 80
Boltzman constant � 1.38�1023JK�1

Faraday constant F 96,490 Ceq�1

Universal gas constant R 8.314 Jmol�1K

3. Results and discussions

3.1. Simulation model results
The simulation model of the coagulation chemical dosing unit described in the previous

section was developed and simulated in MATLAB 7.10 environment. The simulation pa-
rameters are stated in Table 1. The input variables to the simulation models were the
data collected from the water treatment plant for a period of 690 days. The response of
the simulation model is presented in Fig. 5.
The simulation results show that surface charge values are within the range of �1 �

10�5�eq=mg and +7 � 10�5�eq=mg and the pH values fall between the range of 7 and
8.5. Based on these results, a suitable control scheme is proposed for the dosing unit to
ensure that its output variables follow the desired set-points.
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Fig. 5 �Input and output datasets.

3.2. Performance of the estimators
The following four nonlinearity blocks were used in the Wiener model for the system

identi�cation of the coagulation process : piecewise linear, polynomial, sigmoid, and wa-
velet network. The results of each nonlinear block are compared with each other and the
measured output data of the dosing unit. The estimation results of the nonlinear blocks
are shown in Fig. 6. It is observed from the results that the wavelet network had the
highest goodness of �t and hence the best estimators among them. In view of this �nding,
the wavelet estimator is thus used as nonlinear estimator for the Wiener model of the
process.

3.3. Performance of the WMPC scheme
The WMPC scheme proposed in the previous section was implemented using the MPC

toolbox in the MATLAB 7.10/Simulink software. Simulation constraints were placed on
the manipulated variables to take into consideration the minimum and maximum �ow
rate of the metering pumps discharging the sud�oc 3835 (qa), secondary coagulant (qb)
and hydrated lime (qc) into the rapid mixing tank. A lower limit of 0 L/s and an upper
limit of 2 L/s were selected for these variables. The prediction horizon, was chosen as P
= 15, while the control horizon as M = 5. Each of weighting matrices S, R and Q was
selected as diag (0.1,0.1,0.1).
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Fig. 6 �Comparison of the nonlinear estimators/functions with the measured output
dataset.

Fig. 7 �Set point tracking performance.
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Fig. 8 �Control input moves.

In the �rst simulation experiment, the response of WMPC scheme to changes in the
reference trajectory was examined. The system was simulated for a period of 48 hours
while the set points were changed every twelve hours. The simulations results of the
WMPC compared with the nonlinear model predictive control(NMPC) scheme are shown
in Fig. 7. It can be observed that the WMPC scheme tracks the reference trajectory
satisfactorily and its normalised root mean square error (RMSE) values in Table 2 are
lower than that of NMPC. Fig. 8 shows the control input moves to achieve the set-point
tracking performance of the two control schemes. The performance of the WMPC scheme
when the system is subjected to disturbances in form of input and output noise signals and
step signals on the manipulated input channels was investigated in the second simulation
experiment. The simulation results when compared with the NMPC are shown in Fig.
9. The control input moves of the control schemes are shown in Fig. 10. The WMPC
scheme behaved appropriately by rejecting the disturbances acting on the system without
violating the constraints placed on the manipulated variables. In addition, the normalised
RMSE values of WMPC are smaller than that of NMPC indicating a better performance
of WMPC over NMPC.
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Fig. 9 �Noise and disturbance rejection performance.

Fig. 10 �Control input moves.
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Table 2 �.

Control scheme Surface Charge (SC) pH
WMPC(Setpoint) 0.01085 0.1495
NMPC(Setpoint) 0.02880 0.4254
WMPC(Disturbance) 0.03919 0.1335
NMPC(Disturbance) 0.04559 0.2421

Conclusion
The study has presented the Wiener model identi�cation and predictive control of coa-

gulation process in the water treatment plants. Input-output data from the simulation
mode developed using the mechanistic modelling tech niques were applied for the identi�-
cation of the Wiener models of the coagulation chemical dosing unit. A comparison of the
di¤erent Wiener models evaluated in the study showed that the Wiener model based on
Wavelet network block had the best prediction capabilities. This Wiener model was thus
proposed as the internal model of MPC algorithm instead of a standard linear model.
Simulation results showed that the proposed Wiener based MPC algorithm could e¤ecti-
vely handle the coagulation process control in water treatment operations. In continuation
of this study, the subspace model identi�cation may be examined and compared to the
wavelet model identi�cation technique. In addition, the use of genetic programming and
other evolutionary computational modelling techniques could be investigated and applied
in conjunction with the predictive control for coagulation process.
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