EFFICIENCY OF SOME EQUATIONS TO ANALYZE GENOTYPE×ENVIRONMENT INTERACTIONS

M. M. Elsahookie
Dept. of Field Crop Sci.
Coll. of Agric.
Univ. of Baghdad

Omar. H. Al-Rawi
Dept. of Field Crop Sci.
Coll. of Agric.
Univ. of Al-Anbar

ABSTRACT

Yield and other quantitative traits of crop plants, are among the most important in studying genotypes grown in multi-environments. In this kind of studies, it is important to differentiate the best genotype in term of performance and stability across environments. For the minor and multi-genes controlling quantitative traits, the traits of genotypes will be different from environment to another. Modern agriculture requires determining the stable and high performance genotype. Such kind of studies requires analyzing data according to a specific equation or model. In this article, ten known equations were applied on simulated data of 13 genotypes grown in eight environments. These equations were of those published and well-known in literature. There were three important attributes defined in this article. The first, is defining the Ideal genotype as the one of highest performance and 100% stability, the second is the Optimum genotype : the one gets closer to the Ideal in performance and stability, and it was given clear values to be visually identified, and the third is next Optimum genotype that comes after the Optimum. The simplest equation to identify stable genotype was:

\[\text{GR} = (1 - S.D / \bar{X}_i) \times (\bar{X}_i / \bar{X}) \]

while only two equations succeeded to identify high performance and high stability genotype 1- Genotypic Resultant (GR) = (1 - S.D / \bar{X}_i) \times (\bar{X}_i / \bar{X}) . 2- AMMI: \[Y_{ger} = \mu + \alpha_g + \beta_e + \sum \lambda_n \zeta_{gn} \eta_{en} + \rho_{ge} + \varepsilon_{ger} \]

Other equations, either faild to identify the Ideal or the Optimum, or next genotype to Optimum. Accordingly, the equations of Shukla, Wricke, Eberhard and Russell, Lin et al , and others, were of statistical approaches that do not fit GxE interaction analyses.
تختتم أياً صفة للكائن الحي أساسًا لتأثير عوامل البيئة بدرجة أو بأخرى. إن الصفات الكمية ومنها بالدرجة الأصليا حاصل في حالة معرضة لدرجة كبيرة كان تأثير عوامل البيئة أكثر بكثير من تأثير الصفات النوعية (1، 9، 14، 11)، وذا تكون صفات الصنف منها ما هو شبه ثابت أو ثابت مثل الصفات النوعية ومنها ما هو غير ثابت مثل الصفات الكمية (14، 11). إن دراسة هذه الصنف يعطينا أساسًا ضمن دراسة تداخلات الوراثة × البيئة. إن قابلية التركيب الوراثي على إظهار الصفة مرتبط بالنوع الوراثي ب 좋 (21، 9). لقد قسم Bradshaw و Allard (2) إلى عوامل يمكن السيطرة عليها وهي التربة ومواد الزراعة والكثافة الوراثية والمادة ، وعوامل أخرى لا يمكن السيطرة عليها وتشمل الأسطح والعديد والروطب التنبسي، وكلها ذات علاقة بداء الصف وتعتبر صفاتًا.

GEI = Genotype × Environment Interaction

هناك عدة طرق إحصائية استخدمت تجربة عدد الأصناف النباتية (Multiple Environment Trials = MET) لاستخدام الوراثية ثانية الأداء ربما ليست ذات حاصل عال لذا فإن استخدام الطرق التي تجمع بين أداء الحاصل العالي والثابت أصبحت مهمة في الوقت الحاضر لأجل اختيار التركيب الوراثي المثالي لكل البيئة (14). يقال عن الصفن بأنه ثابت عندما يعطي حاصلًا أفضل من غيره في البيانات الضعيفة والحاصل أعلى نسبة في البيانات المناسبة فهو الصنف الذي يعني (9). أما الصنف المثالي (Ideal) حاصل أعلى في الظروف الجيدة مع أعلى درجة ثبات في كل صنف أو تركيب وراثي تصل أو تقرير قيمته من قيم الصنف المثالي التوسيعي هو الصنف الذي يملك أعلى عدد أداء من قيم انحراف للصفة عبر النباتات (14، 11). وهذا إذا ما يكون في مكان الحالة.

كان الغرض من هذا البحث هو أجل اختيار أفضل طريقة للţiحديد الصنف الأمثل (Optimum) الذي يعطي أعلى حاصل عن معدل الأصناف وأعلى درجة ثبات، وإن أي صنف أو تركيب وراثي تصل أو تقرير قيمة من قيم الصنف المثالي (Ideal) هو الذي يحقق ثابتًا (الصنف الأمثل). عليه قد تم وضع أفق جديد في هذا البحث يتلخص في تقنيات تجربة النباتات المثالية والأعمال. وذلك من خلال أولا - وضع فكرة صنف المثالي (Ideal) الذي حدد ضمن التعبير الجيد بأن الصنف الذي يكون ثابتًا للصفة 100% ومعدل حاصله يساوي حاصل أعلى صنف مثالي في البحث وليس من العدل فقط وبدأ فهو معبأ نظري بحث. ثانيا - وضع تجربة للصنف الأمثل (Optimum) الذي يجري معدل حاصله عبر النباتات من حاصل الصنف المثالي مع أعلى قيمة ثبات بين الأصناف المدروسة. ووضع بيانات افتراضية لعدة تركيبات وراثية واقعية تحت تأثير عدة بيئات، وتم اختيار بعض المعادلات الإحصائية المعتمدة أكثر في المراجع وقرارت فيما بينها لتحديد الصنف الأمثل من بين الأصناف المدروسة، وذلك بحسب اعتبارات عالياً كل معادلة، وبالاستناد إلى تشخيص الصنف الأمثل الذي

وهي 1 - بعد التركيب الوراثي ثانيا إذا كان مشابه الصفة من بيئة أخرى صغيراً 2 - بعد التركيب الوراثي ثانيا إذا كانت الاستجابة للبيئة متساوية لعدة استجابة كل التركيب الوراثي في الحفاظ 3 - بعد التركيب الوراثي ثانيا إذا كان معدل مزيج الخطأ من الانحراف في البيئة Leon و Becker المحددة صغيرة، فيما حدث كل من و (4) مفهومي مختلفين للثبات وهما: 1- الثبات الإحصائي. 2- الثبات الدينيمكي، ولكن منهما تعريفه.
وضعت بيانات بصورة تجعله يشخص بمجرد النظر إلى

مجلة العلوم الزراعية العراقية – ٤٢ (١):1 – ١٤ :١١ ٢٠١١

المواضيع والموضوعات

٣- مجموع مربع الانحرافات W_{بيتات}^2

(٢٠) Wricke

\[W_{بيتات}^2 = \sum (X_{ij} - \bar{X}_i - \bar{X}_j + \bar{X}_{..})^2 \]

والتي تشير إلى إن الترقب الوراثي الثاني هو الذي يمثل أقل قيمة

الانحراف عن القيمة المرجعية

٤- تباثي الوراثي RE: الوراثة التي وضعها

(١٧) Shukla

\[\delta_i^2 = \frac{p}{(P-2)(q-1)} \sum (X_{ij} - \bar{X}_i - \bar{X}_j + \bar{X}_{..})^2 \]

والتي تمثل قيمة الوراثة المعمول للوراثة الوراثي الذي

يرتبط على معدل الترقب الوراثي في الوراثة، والتي تتيح استنتاجة

الوراثة الوراثي للتلقيح في الوراثة حيث تم قياسا

للاستنتاج وليس للثبات. تكهن قيم معدل الالتحاد ممثلة

للثبات النسخ 1- قيمة b تقترب من وحدة تعبيرا على

الثبات بقيمة الصفر 2- قيمة b أقل من واحد تعبيرا على

ثبات الأقل من وحدة 3- قيمة b أكثر من واحد تعبيرا على

ثبات الأقل من وحدة.

٥- المحصلة الوراثية: المساحة البينية المجمعة

\[GR = (1-S.D/\bar{X}_i) \times (\bar{X}_i/\bar{X}_.) \]

والتي تشير إلى إن قيمة هذا المساحة كلما كانت أكثر من

واحد (بصورة أعلى) فإنها تعبير أن الصنف يمتلك ثباتا

عالياً واصلاً عالياً. إن هذه المحصلة هي الوحيد من بين

المعادلات المستخدمة في المراجع التي تجمع بين مستوى

٦- معدل الالتحاد b: المحصلة التي وضعها

(١٦) Elsahookie

\[b = \frac{\sum (X_{ij} - \bar{X}_i)(\bar{X}_j - \bar{X}_{..})}{\sum (\bar{X}_j - \bar{X}_{..})^2} \]

والتي تشير إلى معدل الالتحاد b، والمعدل الالتحاد لا داعي

للمعالجة مثلاً لذات الوراثة الموريثة و b = X_i - X_j

الصحة لينة واحدة عبر الترقب الوراثي و b = طال معدل

ال внешة للمساحة لجميع الترقب الوراثي في جميع الوراثات،

ولجميع الوراثات المماثلة لهذه الوراثة. بعد أن وضعنا

الوراثات الإحصائية، تم تحليل التغير التجميعي لها بحسب

تصنيف القوالب الكاملة الممتدة ومبكر (جداول ٢).

اعتمدت عدة مساحات إحصائية قدرت نتائجها فيما بينها

لمجتمع الوراثات للحصول على أفضل قياسة، وخلال الوراثة

(جداول ٣)، فيما تم رسم الوراثات كل ترقب وراثي

بالاعتماد على تقييمها المعدل الداخلي وقيمة الوراثات،

وبحسب كل وراثة، ومواليدها هي:

١- الترقب: أي وضعها، وآخرون

\[S_i^2 = \sum (X_{ij} - \bar{X}_i)^2 / q - 1 \]

والتي تمثل قيمة الوراثة المعمول للوراثة الوراثي.

٢- ثبات: أي وضعها، وآخرون

\[Stability \% = (1-S.D/\bar{X}_i) \times ١٠٠ \]

فيها أن قيمة الثبات يجب أن تكون مساوية أو أكثر من

٨٥% وعندما الوراثة الموريثة بطريقة غير مثلى.

٣- مربع الالتحاد: أي وضعها

\[S_i^2 = \sum (X_{ij} - \bar{X}_j)^2 / q - 1 \]

وتتيح قيمة الوراثة المعمول للوراثة الوراثي.

٤- معدل الالتحاد b: المعدلة التي وضعها

\[b = \frac{\sum (X_{ij} - \bar{X}_i)(\bar{X}_j - \bar{X}_{..})}{\sum (\bar{X}_j - \bar{X}_{..})^2} \]
المعادلة الثانية التي ذكرت أعلاه (10) والمبينة كذلك في جدول 3.

الساهوكي والراوي

المعادلة التي وضعها Eberhart and Russell (7):

\[\delta i^2 = \frac{1}{n-1} \sum (Xij - \bar{Xi})^2 - \beta i^2 \sum (\bar{X}.j - \bar{X}..)^2 / \sum (\bar{X}.j - \bar{X}..)^2 , \]

أي أن الانحراف عن خط الانحدار:

(7) Eberhart and Russell

\[\delta i = \frac{1}{n-1} \sum (Xij - \bar{Xi})^2 - \beta i^2 \sum (\bar{X}.j - \bar{X}..)^2 / \sum (\bar{X}.j - \bar{X}..)^2 , \]

وهي عبارة عن الانحرافات التكرارية (슨) والتحقيق (غ).

(13) Gauch & Zobel

\[Y_{ger} = \mu + \alpha g + \beta e + \sum n \bar{\zeta} n \bar{\eta} n + \rho_{ge} + \epsilon_{ge} \]

حيث أن:

\[Y_{ger} \]

القيمة التحقيقية لل:new: hvor درجة الحرارة & الطبيعة.

\[e_{ge} \]

المتوسط العام،

\[\mu \]

وفي الصنف المبينة (Ideal) وذلك بالمقارنة مع الصنف المثالي (Ideal) الذي يمثل أعلى حاصل 100%ً. كما يوضح جدول 1 متوسطات الصفة للتركيب الوراثية النامية في البيئات، وتحليلها الإحصائي (جدول 2).

<table>
<thead>
<tr>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E6</th>
<th>E7</th>
<th>E8</th>
<th>(\bar{Xi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>3</td>
<td>2.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>G2</td>
<td>2.5</td>
<td>2.5</td>
<td>1.5</td>
<td>1.5</td>
<td>3.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>G3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>1.5</td>
</tr>
<tr>
<td>G4</td>
<td>9</td>
<td>8.5</td>
<td>9.5</td>
<td>10.5</td>
<td>5.5</td>
<td>11</td>
<td>8.5</td>
<td>13.5</td>
</tr>
<tr>
<td>G5</td>
<td>6.5</td>
<td>10.5</td>
<td>8.5</td>
<td>13</td>
<td>7.5</td>
<td>10.5</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>G6</td>
<td>6</td>
<td>6.5</td>
<td>11.5</td>
<td>5</td>
<td>13.5</td>
<td>9.5</td>
<td>14.5</td>
<td>9.5</td>
</tr>
<tr>
<td>G7</td>
<td>4</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>4</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>G8</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>G9</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>G10</td>
<td>13.5</td>
<td>13.5</td>
<td>13.5</td>
<td>14.5</td>
<td>14.5</td>
<td>13.5</td>
<td>14.5</td>
<td>14.5</td>
</tr>
<tr>
<td>G11</td>
<td>11.5</td>
<td>11.5</td>
<td>11</td>
<td>12</td>
<td>11.5</td>
<td>11</td>
<td>11</td>
<td>11.5</td>
</tr>
<tr>
<td>G12</td>
<td>12</td>
<td>13</td>
<td>12.5</td>
<td>13.5</td>
<td>13.5</td>
<td>12.5</td>
<td>13.5</td>
<td>13.5</td>
</tr>
<tr>
<td>G13</td>
<td>15.1</td>
<td>15</td>
<td>15.2</td>
<td>15.3</td>
<td>15.1</td>
<td>15.25</td>
<td>15</td>
<td>15.15</td>
</tr>
</tbody>
</table>
جدول 2. تحليل التباين للتفاعل الوراثي × البيئي (ANOVA)

<table>
<thead>
<tr>
<th>s.o.v</th>
<th>d.f</th>
<th>s.s</th>
<th>m.s</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>12</td>
<td>4405.75</td>
<td>367.14</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>21.39</td>
<td>3.05</td>
</tr>
<tr>
<td>GE</td>
<td>84</td>
<td>321.18</td>
<td>3.82</td>
</tr>
<tr>
<td>Error</td>
<td>104</td>
<td>64.5</td>
<td>0.62</td>
</tr>
<tr>
<td>Total</td>
<td>207</td>
<td>4812.82</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. المعادلات الإحصائية المستخدمة في البحث

<table>
<thead>
<tr>
<th>No.</th>
<th>Equations (E)</th>
<th>Author/ User</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>$s_{i}^{2} = \sum (X_{ij} - \bar{X}_{i.})^{2}/q - 1$, q = environment</td>
<td>Lin et al (16)</td>
</tr>
<tr>
<td>E2</td>
<td>stability $% = (1 - S.D / \bar{X}_{i.}) \times 100$</td>
<td>Elsahookie(10)</td>
</tr>
<tr>
<td>E3</td>
<td>$s_{i}^{2} = \sum (X_{ij} - \bar{X}_{j})^{2}/q - 1$</td>
<td>Elsahookie (10)</td>
</tr>
<tr>
<td>E4</td>
<td>$b = \sum (X_{ij} - \bar{X}{i.})(\bar{X}{j} - \bar{X}{..}) / \sum (X{ij} - \bar{X}_{i.})^{2}$</td>
<td>Elsahookie (10)</td>
</tr>
<tr>
<td>E5</td>
<td>$W_{i}^{2} = \sum (X_{ij} - \bar{X}{i.} - \bar{X}{j} + \bar{X}_{..})^{2}$</td>
<td>Wricke (20)</td>
</tr>
<tr>
<td>E6</td>
<td>$\delta_{i}^{2} = \frac{P}{(p-2)(q-1)} \sum (X_{ij} - \bar{X}{i.} - \bar{X}{j} + \bar{X}{..})^{2} - \frac{\sum \sum (X{ij} - \bar{X}{i.} - \bar{X}{j} + \bar{X}_{..})^{2}}{(p-1)(p-2)(q-1)}$</td>
<td>Shukla (17)</td>
</tr>
<tr>
<td>E7</td>
<td>$b = \sum (X_{ij} - \bar{X}{i.})(\bar{X}{j} - \bar{X}{..}) / \sum (\bar{X}{j} - \bar{X}_{..})^{2}$</td>
<td>Finly & Wilkinson (12)</td>
</tr>
<tr>
<td>E8</td>
<td>$GR = (1 - S.D / \bar{X}{i.}) \times (\bar{X}{i.} / \bar{X}_{..})$</td>
<td>Elsahookie (9)</td>
</tr>
<tr>
<td>E9</td>
<td>$\delta_{i}^{2} = \frac{1}{E-1} \sum (X_{ij} - \bar{X}{i.})^{2} - \beta{i}^{2} \sum (\bar{X}{j} - \bar{X}{..})^{2}$</td>
<td>Eberhart and Russell (7)</td>
</tr>
</tbody>
</table>
The Ideal Cultivar

<table>
<thead>
<tr>
<th>High yield</th>
<th>Low stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY</td>
<td>LS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High yield</th>
<th>High stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY</td>
<td>HS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low yield</th>
<th>Low stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LY</td>
<td>LS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low yield</th>
<th>High stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LY</td>
<td>HS</td>
</tr>
</tbody>
</table>

Yield (t/h) of environment

M1. 1. Classification of the genetic material based on the data collected from the four major crops which are grown continuously.

The results and discussion

This research was conducted to identify new varieties with superior traits compared to the existing ones. The results showed that the varieties under study can be classified into two types: ideal and optimum.

Ideal: Varieties that have high yield and high stability.

Optimum: Varieties that have low yield and high stability.

These results can be used to improve the selection of varieties for future research.
الصنف الأمثل في هذا البحث منها ما اعتمدت على قياس التباين وآخر على مجموع انحرافات المعاملات وكذلك تحليل معامل الإخراز (جدول 3). إن قيم نتائج المعادلات قد وضعت في جدول 4 حيث يوضح قيم تلك المعادلات مع تسجيل كل تركيب شبهه كل معادلة، فيما يلي مناقشةً نتيجةً لمعادلةً:

الساهوكي والراوي.

تم حساب مكونات التباين للصنفة المدروسة، إذ أوضح جدول 2 معنوية التداخل الوراثي × البيئي مما يدل على وجود تأثيرات معنوية للبيئة في ثبت تلك الصفة، أو استجابات متابعة للأسئلة عبر بيئة البحث. أتى من المعلومات أن المعادلات المستخدمة في تحليل النباتات تختلف من حيث طريقة تطبيقاتها واستنتاجاتها لوصف الصفة الثابت مع أدائه الأعلى. نذا فقد اعتمدت عدة طرق لتحديد

مجلة العلوم الزراعية العراقية – 2011، 1(2)، 101-118

شكل 1. تشخيص سلوك الأصناف باعتماد المعادلة التي وضعها Lin و آخرون (16).

متوسط الحاصل (طن/ هكتار) للفeğin

الفل قيمات التباين بلغت 0.01 وكان حاصل هذا التركيب أعلى حاصل ضمن التركيب الوراثي واقترب قيمته في النبات المظهرن من قيمة الصنف المثلي ضمن المخطط الموضوع. لقد نجحت هذه المعادلة بتشخيص التركيب الأمثل الذي يقرب من المثلي. يلاحظ من الشكل 1 أن التركيب الثاني بعد التركيب الأمثل كان التركيب G7

\[S_i^2 = \sum (X_{ij} - \bar{X}_i)^2 / q - 1 \]

الشكل القائم التي تعطيها المعادلة لتشخيص الصنف. معادلة 1: التباين في المعادلة على قيمة MRBZ. في الباق من التحاق ذي الصلة، حيث بعد التركيب الوراثي ثبتا إذا كان تباينه أقل ما يمكن مقارنة بالتركيب الأخرى. أعطى التركيب الوراثي
لا التغيير في المعادلة ينسب القيمة لمعدل الصنف
فتشخيص الأصناف الثابتة (9.1) بهذه الطريقة من دون
تشخيص دقيق لتسلسل الأصناف بحسب أداءها للصفحة الكمية
المدروسة.

بينما هو التركيب G10 وبدأ فان هذا ضعف واضح في
هذه المعادلة من حيث التشخيص لأن حاصله أوطأ من
المعدل العام ، وذذا في توصيف تشخيص الصنف الأمثل
لكنها (المعادلة) أقل دقة بالمقارنة مع المعادلات الأخرى

المستوى الحاصل (طن / هكتار) للبلدات

شكل 2 . تشخيص سلوك الأصناف باعتماد معادلة Elsahookie

يمثل العوامد stability% = (1 – S.D / \(\bar {X}_i \))\times 100
الأومن في الشكل القيم التي تعطيها المعادلة لتشخيص ثبات
الصنف.

معادلة 2 : (Stability %) تنص على أن التركيب
الوراثي بعد ثانيا إذا كانت قيمة تساوي أو أكثر من 85
وقد أعطي التركيب الوراثي G13 أعلى قيمة للثبات
وكذلك من خلال إعطائها الناتج على شكل نسبة منوية تسهل على القارئ تشخيص الصفن التأثب بدلاً من القيم الأخرى التي تمتاز بالتعقيد نظراً لكون تلك القيم مطلقة.

وأكد الساهوكي (9) أن تلك المعادلة تعد من بين أفضل المعادلات في دقته وتحديدها لل صفن الأمثل وما بعده، وتتميز هذه المعادلة بالسهولة في التطبيق والوضوح.

شَكَل 3. تشخيص سلوك الأصناف باعتماد المعادلة التي وضعها Elsahookie (10) .

قيمة انحراف (7.51) لا أن هذا التركيب كان معدل حاصله (9.56 طن/ه) وهو أعلى من المعدل العام إلا أن حاصله لم يقرب من قيمة حاصل الصفن المتالي أو الذي يلي المتالي وكما في الشكل 3. لم تنطبق نتائج هذه المعادلة مع التعريف الموضوع للصفن المتالي والأمثل وكذلك لم يمثل العوائد الأيمن في المعادلة التي تعطيا المعادلة لتشخيص ثبات الصفن.

معادلة3: تاعتماد هذه المعادلة مجموع مربعات الانحراف حيث يعد التركيب ثابتاً إذا امتلك أقل قيمة انحراف عن المعدل العام للأصناف. أعطي التركيب الوراثي أقل G5 المعدل العام للأصناف.
11.11.18-19 (1) 3-2
(10) Elsahookie 4.00a
(21)
(10) Elsahookie 4.00a
(21)
صنف الأمثل، فقد ذكر نفس الباحث (9) أن تلك المعادلة تأتي في المرتبة الثانية من بين العديد من المعادلات في اختبار الثبات وهي أقل دقة في تحديد الصفع الأمثل. فيما ذكر Al-Rawi وElsahookie (1) أيضا أن من مميزات هذه المعادلة هو أن الثبات المظاهرية للتركيب الوراثي يكون معتمدًا على سلوك في البيانات المختلفة بمعزل عن قيم سلوك التركيب الأخرى، وبدلاً من ذلك تقدر الثبات، ولكنها تصلح لتقدير الثبات مثل المعادلات الأخرى كونها ذات معايير إحصائية بحثية.

\[b = \frac{\sum (X_{ij} - \bar{X}_i)(\bar{X}_j - \bar{X})}{\sum (X_{ij} - \bar{X}_i)^2} \]

يتمثل العوّد الأولين في الشكل القيم التي تعطينا المعادلة لتشخيص ثبات الصفع.

معادلة 4: تستخدم معامل الانحدار \(b \), بينت المعادلة أن التركيب الوراثي G9 أعطى قيمة انحدار 0.538 (شكل 4) في حين أن حاصل هذا التركيب الوراثي منخفض عن المعدل العام لجميع التركيب ولم تتربقه قيمته من قيمة الصفع المثالي، مما نجحت هذه المعادلة بتشخيص الصفع الذي يلي الصفع الأمثل وهو التركيب الوراثي G10 الذي كان معدل حاصله أعلى من المعدل العام وقرب من حاصل متوسط الحاصل (طن/ هكتار) للبيتات (20) Wricke.

الساهوكي والراوي .}

The ideal cultivar

The Ideal cultivar

Yield (t/ha)

The Ideal cultivar

The Ideal cultiva
أعطى قيمة مقدارها 0.621 (شكل 7) يعد أكثر التراكيب ثباتاً حسب المعادلة، غير أن هذه المعادلة قد شخصت التركيب الوراثي في المرتبة الثانية، وهذا خطأ لأن التركيب الذي بلي الأمل هو G9، بينما أن هذه المعادلة لا تصلح أبداً لتحديد الصنف الأمل والذي يليه لا يعاب على هذه الطريقة هو اعتماد التركيب الوراثي في ثباته على قيم التراكيب الأخرى إذا كانت التراكيب الأخرى غير ثابتة ويكشف سلوكها باختلاف البيئات فإن التركيب المدرس يسير موازيا لسلوكها، وبذا فإنه سيظهر ثابتاً وهو في الحقيقة غير ذلك.

\[b = \frac{\sum (X_{ij} - \bar{X}_i)(\bar{X}_j - \bar{X})}{\sum (\bar{X}_j - \bar{X})^2} \]

يُمثل العوام الأيمن في الشكل الفم التي تعطى المعادلة لتشخيص ثبات الصنف.

معادلة 7: تعتمد معامل الانحدار b حيث تعد من بين أقدم الطراز المستخدمة في تحليل النباتات والتي تشير إلى أن التركيب الوراثي الثاني ذو أداء موازٍ لأداء متوسط التراكيب عبر البيئات وقد اتخذ تقاساً لثبات الصنف من خلال اختبار أداءه على معدل البيئات. إذ تشير المعادلة أن الصنف الذي يعني قيمة b موجبة واقل من واحد هو الصنف الأكثر ثباتاً، عليه فإن التركيب الوراثي G8 الذي

المقدمة

The Ideal cultivar

<table>
<thead>
<tr>
<th>Yield Th</th>
<th>HY-LS</th>
<th>HY-HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Mean | | |

g13		
g10		
g12		

<table>
<thead>
<tr>
<th>g6</th>
<th>HY-LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>g5</td>
<td>HY-HS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g3</th>
<th>LY-LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>g2</td>
<td>LY-HS</td>
</tr>
</tbody>
</table>

| g8 | | |
| g7 | | |

| g1 | | |

0.9	0.7
0.5	0.4
0.2	0.1

| 2 | 1.9 |
| 1.7 | 1.5 |

متوسط الحاصل (طن/ هكتار) للبيئات

13
للملاحظة 8، تشير المعادلة التي تم استخدامها إلى أن التراكيب الأخرى تبدأ في الرتب الأربَع السبعة في شكل 8. نجد أن التراكيب HY-HS و G10، HY-G7 و G6 و G5، و HY-LS و G3 و G2 هما ضمن المرتب، و هي مطابقة للبيانات الموضحة في مخطط 1.

يمثل العمود، GR = ((1 - S.D / \bar{X}_i.) × (\bar{X}_i. / \bar{X}_..)

الأيمن في الشكل القيم التي تطبقها المعادلة لتشخيص ثبات الصف.

معادلة 8: تعتمد المحصلة الوراثية التي تشير إلى أن الصفوف والرافعات بجعب أن يمثل تلك المحصلة الوراثية الأكبر وهي عادة أكثر من واحد، وهذا فإن نجد أن الصفوف الأيمن بحسب المعادلة هو G13 (1.93) و أعلى حاصل (13.13 طين/8) واقتربت قيمة هذا التراكيب من قيمة الصفوف المتوسطة، لذا فإن هذه المعادلة مميزة وفعالة وبسيطة في تشخيص الثبات
المعادلة في تشخيص الاصناف الأمثل لكنها فشلت في تشخيص الاصناف الذي يليه (شكل 9). ان استخدام هذه المعادلة واجب انتقاد من بعض الباحثين (10 و 16) وذلك لضعف المعادلة في تشخيص الاصناف الذي يلي الاصناف الثابت إذ أنها معادلة إحصائية بحتة لاستخراج قيمة الانحدار. إذ يبين الشكل 9 أن الاصناف الأمثل كان التركيب G9 تم الذي يليه وهو التركيب G7 بينما الذي يلي الاصناف الأمثل هو G10 إذ أن حاصل كلا التراكيب كان أقل من معدل العام لجميع التراكيب الداخلة ضمن البحث.

يتمثل

\[\delta_i^2 = \frac{1}{E-1} \sum (X_{ij} - \bar{X}_j)^2 - \beta_i^2 \sum (\bar{X}_i - \bar{X})^2 \]

العوام الايمن في الشكل اليمين التي تطبيقها المعادلة لتشخيص ثبات الاصناف.

معادلة 9 : الانحراف عن معامل الانحدار \(\theta^2 \) والتي تعد من بين أقدم الطرق المستخدمة في تقدير الثبات مع كثرة شيوخ الباحثين حيث اعتمدت على قيمة الانحراف عن خط الانحدار لقياس الثبات. إذ يعد التراكيب الوزارية ثابتة إذا كانت قيمة الانحراف له أقل ما يمكن ضمن التراكيب الداخلة في الدراسة. أعطى التركيب الوزاري أقل قيمة انحراف (0.296) وبهذا فقد نجحت G13

ش新型冠状 تصور سلوك الأصناف بامتثال معادلة

\[Y_{ger} = \mu + ag + \sum \lambda \eta + \rho ge + \varepsilon \]

جدول 5. التراكيب الوراثية الأربعة المتباينة في البيئات ألمانيا بحسب أمميج (13)

<table>
<thead>
<tr>
<th>Env.</th>
<th>First four AMMI selections</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7</td>
<td>G13 G10 G12 G11</td>
</tr>
<tr>
<td>E8</td>
<td>G13 G10 G12 G4</td>
</tr>
<tr>
<td>E3</td>
<td>G13 G10 G12 G11</td>
</tr>
<tr>
<td>E4</td>
<td>G13 G10 G12 G11</td>
</tr>
<tr>
<td>E1</td>
<td>G13 G10 G12 G11</td>
</tr>
<tr>
<td>E2</td>
<td>G13 G10 G12 G6</td>
</tr>
<tr>
<td>E6</td>
<td>G13 G6 G10 G12</td>
</tr>
<tr>
<td>E5</td>
<td>G13 G10 G6 G12</td>
</tr>
</tbody>
</table>
هذه المعادلة في تشخيص الصفن الأمل والذي يليه بصورة جيدة جداً و واضحة.

يتضح من مناقشة البيانات والأشكال حول كل معادلة لتشخيص الصفن الأمل ثم الذي يليه ، ان المعادلات:

\[\text{stability} \% = (1 - \frac{S.D}{\bar{X}_i}) \times 100 \]

\[GR = (1 - \frac{S.D}{\bar{X}_i}) \times (\frac{\bar{X}_i}{\bar{X}_{..}}) \]

وأنموذج AMMI فقط قد شخص الصفن الأمل ثم AMMI و أنموذج G13 الذي يليه، بينما نجحت المعادلة التاسعة (\(\bar{X}_i\)) في تشخيص ثبت الصفن بغض النظر عن حاصله، وبدأ في تصالح لتشخيص الثبات من دون تشخيص الصفن الأمل الذي وضعت معايير بصورة واضحة في هذا البحث. عليه نوصي من خلال هذا البحث باعتماد أي من المعادلات الثلاث قيد البحث.

ان نتائج تحليل أنموذج AMMI و هي للتأثيرات المضيفة الرئيسية والداخليات المتعددة ، تكون على أساس بيانات الأصناف وليس على أساس بيانات البيانات. إن أنموذج تحليل يعطي قيم التراكيب الوراثية على شكل محارر الاسم البياني والتراكيب الوراثية التي تقترب قيمها من الصفر بعد الأكثر ثباتاً. من الشكل 10 نجد ان التركيب الوراثي G13 قد أعطى قيمة موجبة وتقترب من الصفر ثم التركيبان G10 و G12. كذلك بين الجدول 5 ان التركيب الوراثي G13 قد تميز في كل البيانات ثم الذي يليه وهو G10 وذلك في كل البيانات ، وهذا تأكيد على ما تم وضعه من تعريف للصنف الأمل والذي يليه. لقد نجحت
جدول 4. تسلسل التراكيب الوراثية في الثبات بحسب المعادلات المستخدمة في البحث

<table>
<thead>
<tr>
<th>Geno.</th>
<th>yield</th>
<th>Eq.1</th>
<th>rank</th>
<th>Eq.2</th>
<th>rank</th>
<th>Eq.3</th>
<th>rank</th>
<th>Eq.4</th>
<th>rank</th>
<th>Eq.5</th>
<th>rank</th>
<th>Eq.6</th>
<th>rank</th>
<th>Eq.7</th>
<th>rank</th>
<th>Eq.8</th>
<th>rank</th>
<th>Eq.9</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>2.25</td>
<td>0.285</td>
<td>7</td>
<td>76.22</td>
<td>9</td>
<td>35.45</td>
<td>9</td>
<td>-0.34</td>
<td>12</td>
<td>4.22</td>
<td>9</td>
<td>0.539</td>
<td>9</td>
<td>-0.897</td>
<td>10</td>
<td>0.22</td>
<td>13</td>
<td>-0.073</td>
<td>8</td>
</tr>
<tr>
<td>G2</td>
<td>2.25</td>
<td>0.5</td>
<td>10</td>
<td>68.57</td>
<td>12</td>
<td>35.57</td>
<td>10</td>
<td>-0.11</td>
<td>10</td>
<td>5.06</td>
<td>10</td>
<td>0.68</td>
<td>10</td>
<td>-0.483</td>
<td>9</td>
<td>0.198</td>
<td>12</td>
<td>0.251</td>
<td>10</td>
</tr>
<tr>
<td>G3</td>
<td>2.5</td>
<td>0.428</td>
<td>9</td>
<td>73.8</td>
<td>11</td>
<td>67.8</td>
<td>13</td>
<td>0.098</td>
<td>6</td>
<td>3.02</td>
<td>8</td>
<td>0.336</td>
<td>8</td>
<td>0.37</td>
<td>4</td>
<td>0.237</td>
<td>11</td>
<td>0.176</td>
<td>9</td>
</tr>
<tr>
<td>G4</td>
<td>9.5</td>
<td>5.357</td>
<td>12</td>
<td>75.68</td>
<td>10</td>
<td>8.27</td>
<td>3</td>
<td>0.056</td>
<td>8</td>
<td>34.05</td>
<td>12</td>
<td>5.575</td>
<td>12</td>
<td>2.65</td>
<td>12</td>
<td>0.925</td>
<td>6</td>
<td>5.159</td>
<td>12</td>
</tr>
<tr>
<td>G5</td>
<td>9.56</td>
<td>4.388</td>
<td>11</td>
<td>78.13</td>
<td>8</td>
<td>7.51</td>
<td>1</td>
<td>0.074</td>
<td>7</td>
<td>26.96</td>
<td>11</td>
<td>4.378</td>
<td>11</td>
<td>2.85</td>
<td>13</td>
<td>0.961</td>
<td>5</td>
<td>3.832</td>
<td>11</td>
</tr>
<tr>
<td>G6</td>
<td>9.5</td>
<td>12.35</td>
<td>13</td>
<td>62.94</td>
<td>13</td>
<td>7.99</td>
<td>2</td>
<td>0.003</td>
<td>9</td>
<td>78.24</td>
<td>13</td>
<td>13.03</td>
<td>13</td>
<td>0.326</td>
<td>5</td>
<td>0.769</td>
<td>7</td>
<td>9.559</td>
<td>13</td>
</tr>
<tr>
<td>G7</td>
<td>3.62</td>
<td>0.054</td>
<td>2</td>
<td>93.61</td>
<td>5</td>
<td>19.9</td>
<td>6</td>
<td>-0.69</td>
<td>13</td>
<td>1.69</td>
<td>6</td>
<td>0.112</td>
<td>6</td>
<td>-0.328</td>
<td>8</td>
<td>0.436</td>
<td>9</td>
<td>-0.251</td>
<td>2</td>
</tr>
<tr>
<td>G8</td>
<td>4.75</td>
<td>0.214</td>
<td>5</td>
<td>90.31</td>
<td>7</td>
<td>10.62</td>
<td>4</td>
<td>0.33</td>
<td>4</td>
<td>1.30</td>
<td>5</td>
<td>0.046</td>
<td>5</td>
<td>0.621</td>
<td>1</td>
<td>0.552</td>
<td>8</td>
<td>-0.101</td>
<td>7</td>
</tr>
<tr>
<td>G9</td>
<td>3.56</td>
<td>0.102</td>
<td>3</td>
<td>91.01</td>
<td>6</td>
<td>20.36</td>
<td>7</td>
<td>0.538</td>
<td>1</td>
<td>0.74</td>
<td>1</td>
<td>-0.05</td>
<td>1</td>
<td>0.486</td>
<td>2</td>
<td>0.416</td>
<td>10</td>
<td>-0.214</td>
<td>3</td>
</tr>
<tr>
<td>G10</td>
<td>14</td>
<td>0.285</td>
<td>6</td>
<td>96.21</td>
<td>3</td>
<td>44.47</td>
<td>11</td>
<td>0.435</td>
<td>2</td>
<td>1.05</td>
<td>3</td>
<td>0.004</td>
<td>3</td>
<td>1.09</td>
<td>3</td>
<td>1.733</td>
<td>2</td>
<td>-0.129</td>
<td>5</td>
</tr>
<tr>
<td>G11</td>
<td>11.37</td>
<td>0.128</td>
<td>4</td>
<td>96.48</td>
<td>2</td>
<td>15.11</td>
<td>5</td>
<td>-0.18</td>
<td>11</td>
<td>1.99</td>
<td>7</td>
<td>0.162</td>
<td>7</td>
<td>-0.203</td>
<td>7</td>
<td>1.411</td>
<td>4</td>
<td>-0.158</td>
<td>4</td>
</tr>
<tr>
<td>G12</td>
<td>13</td>
<td>0.357</td>
<td>8</td>
<td>95.38</td>
<td>4</td>
<td>31.13</td>
<td>8</td>
<td>0.416</td>
<td>3</td>
<td>1.21</td>
<td>4</td>
<td>0.031</td>
<td>4</td>
<td>1.304</td>
<td>11</td>
<td>1.595</td>
<td>3</td>
<td>-0.105</td>
<td>6</td>
</tr>
<tr>
<td>G13</td>
<td>15.13</td>
<td>0.011</td>
<td>1</td>
<td>99.27</td>
<td>1</td>
<td>62.11</td>
<td>12</td>
<td>0.284</td>
<td>5</td>
<td>0.83</td>
<td>2</td>
<td>-0.03</td>
<td>2</td>
<td>0.035</td>
<td>6</td>
<td>1.933</td>
<td>1</td>
<td>-0.296</td>
<td>1</td>
</tr>
</tbody>
</table>