PRIME BI-IDEALS IN Γ-SEMIRINGS

R. D. Jagatap and Y. S. Pawar

Abstract. In this paper we introduce the concepts of prime, semiprime, strongly prime, irreducible and strongly irreducible bi-ideals in a Γ-semiring. Characterizations of a Γ-semiring using these concepts are furnished. A topology on the set of strongly prime bi-ideals is defined and a property of the space of strongly prime bi-ideals of a Γ-semiring is furnished.

1. Introduction

The notion of Γ-rings was introduced by Nobusawa in [10]. The class of Γ-rings contains not only all rings but also ternary rings. As a generalization of rings, semirings were introduced by Vandiver [14] and he obtained many results about it. Further as a generalization of Γ-rings and semirings, the notion of a Γ-semiring was introduced by Rao [11]. It is well known that ideals play an important role in any abstract algebraic structures. Characterizations of ideals in a semigroup were given by Lajos [8], while ideals in semirings were characterized by Iseki [4, 5]. Prime and semiprime ideals in Γ-semirings were discussed by Dutta and Sardar [2]. Authors were studied quasi-ideals and bi-ideals in Γ-semirings [6, 7]. The notion of a bi-ideal was first introduced for semigroups by Good and Hughes [3]. The concept of a bi-ideal for ring was given by Lajos [9] and for semirings by Shabir, Ali and Batool [12]. The concept of a bi-ideal in a semigroup (ring and semiring) is a generalization of one sided ideal and two sided ideal in a semigroup (ring and semiring). Prime bi-ideals in a Γ-ring was introduced by Booth and Groeneveld [1] and in a semigroup by Shabir and Kanwal [13].

In this paper efforts are made to extend the notion of prime ideals and semiprime ideal in Γ-semirings to prime bi-ideal and semiprime bi-ideal respectively in Γ-semirings. Also we define strongly prime bi-ideal in Γ-semirings and discuss some

2010 Mathematics Subject Classification. 16Y60, 16Y99.

Key words and phrases. Bi-ideal, prime bi-ideal, semiprime bi-ideal, strongly prime bi-ideal, irreducible bi-ideal, strongly irreducible bi-ideal.
properties of it. Finally we prove a topological property of the space of strongly prime bi-ideals of a Γ-semiring.

2. Preliminaries

First we recall some definitions of the basic concepts of Γ-semirings that we need in sequel. For this we refer Dutta and Sardar [2].

Definition 2.1. Let S and Γ be two additive commutative semigroups. S is called a Γ-semiring if there exists a mapping $S \times \Gamma \times S \rightarrow S$ denoted by $a\alpha b$; for all $a, b \in S$ and $\alpha \in \Gamma$ satisfying the following conditions:

(i) $a\alpha (b + c) = (a\alpha b) + (a\alpha c)$

(ii) $(b + c)\alpha a = (b\alpha a) + (c\alpha a)$

(iii) $a(\alpha + \beta)c = (a\alpha c) + (a\beta c)$

(iv) $a\alpha (b\beta c) = (a\alpha b)\beta c$; for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

Obviously, every semiring S is a Γ-semiring.

Let S be a semiring and Γ be a commutative semigroup. Define a mapping $S \times \Gamma \times S \rightarrow S$ by, $a\alpha b = ab$; for all $a, b \in S$ and $\alpha \in \Gamma$. Then S is a Γ-semiring.

Definition 2.2. An element $0 \in S$ is said to be an absorbing zero if $0a = 0 = a0$, $a + 0 = 0 + a = a$; for all $a \in S$ and $\alpha \in \Gamma$.

Now onwards S denotes a Γ-semiring with absorbing zero unless otherwise stated.

Definition 2.3. A non-empty subset T of S is said to be a sub-Γ-semiring of S if $(T, +)$ is a subsemigroup of $(S, +)$ and $a\alpha b \in T$; for all $a, b \in T$ and $\alpha \in \Gamma$.

Definition 2.4. A non-empty subset T of S is called a left (respectively right) ideal of S if T is a subsemigroup of $(S, +)$ and $\alpha a \in T$ (respectively $\alpha x \in T$) for all $a \in T$, $x \in S$ and $\alpha \in \Gamma$.

Definition 2.5. If T is both left and right ideal of S, then T is known as an ideal of S.

If M, N are non-empty subsets of S, then

$M \Gamma N = \{ \sum_{i=1}^{n} x_i \alpha_i y_i \parallel x_i \in M, \alpha_i \in \Gamma, y_i \in N \}$.

Definition 2.6. An element a of a Γ-semiring S is said to be regular if $a \in a\Gamma\Gamma a$.

If all elements of a Γ-semiring S are regular, then S is known as a regular Γ-semiring.

Definition 2.7. S is said to be an intra-regular Γ-semiring if for any $x \in S$, $x \in S\Gamma x\Gamma xS$.

Lemma 2.1. S is regular if and only if $R \Gamma L = R \cap L$, for a right ideal R and left ideal L of S.

Lemma 2.2. Let $(a)_b$ denote the bi-ideal generated by $a \in S$. If S is a regular Γ-semiring, then $(a)_b = a \Gamma S \Gamma a$.

3. Prime Bi-ideals

Here we recall the definition of a bi-ideal in Γ-semiring from [7].

Definition 3.1. A non-empty subset B of S is said to be a bi-ideal of S if B is a sub-Γ-semiring of S and $B \subseteq S \subseteq B$.

Example 3.1. Consider the semiring $S = M_{2\times 2}(N_0)$, where N denotes the set of all natural numbers and $N_0 = N \cup \{0\}$. If $\Gamma = S$, then S forms a Γ-semiring with $A \alpha B = \text{usual matrix product of } A, \alpha, B$; for all $A, \alpha, B \in S$.

(1) $C = \left\{ \begin{pmatrix} 0 & x \\ 0 & y \end{pmatrix} \ | \ x, y \in N_0 \right\}$ is a bi-ideal of S.

(2) $D = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & x \end{pmatrix} \ | \ x \in N_0 \right\}$ is a bi-ideal of S.

Statements given in the following theorem are easy to verify.

Theorem 3.1. In Γ-semiring S following statements hold.

(1) Any one sided (two sided) ideal of S is a bi-ideal of S.
(2) Intersection of a right ideal and a left ideal of S is a bi-ideal of S.
(3) Arbitrary intersection of bi-ideals of S is also a bi-ideal of S and hence the set of all bi-ideals of S forms a complete lattice.
(4) If B is a bi-ideal of S, then $B \Gamma s$ and $s \Gamma B$ are bi-ideals of S, for any $s \in S$.
(5) If B is a bi-ideal of S, then $b \Gamma B \Gamma c$ is a bi-ideal of S, for $b, c \in S$.
(6) If B is a bi-ideal of S and if T is a sub-Γ-semiring of S, then $B \cap T$ is a bi-ideal of T.
(7) If A, B are bi-ideals of S, then $A \Gamma B$ and $B \Gamma A$ are bi-ideals of S.
(8) For any $a \in S$, $S \Gamma a$ is a left ideal and $a \Gamma S$ is a right ideal of S.

Definition 3.2. A bi-ideal B of S is called a prime bi-ideal if $B_1 \Gamma B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$, for any bi-ideals B_1 and B_2 of S.

Definition 3.3. A bi-ideal B of S is called a strongly prime bi-ideal if $(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$, for any bi-ideals B_1 and B_2 of S.

Definition 3.4. A bi-ideal B of S is called a semiprime bi-ideal if for any bi-ideal B_1 of S, $B_1 \Gamma B_1 \subseteq B$ implies $B_1 \subseteq B$.

Obviously every strongly prime bi-ideal in S is a prime bi-ideal and every prime bi-ideal in S is a semiprime bi-ideal.
Definition 3.5. A bi-ideal B of S is called an irreducible bi-ideal if $B_1 \cap B_2 = B$ implies $B_1 = B$ or $B_2 = B$, for any bi-ideals B_1 and B_2 of S.

Definition 3.6. A bi-ideal B of S is called a strongly irreducible bi-ideal if for any bi-ideals B_1 and B_2 of S, $B_1 \cap B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$.

Obviously every strongly irreducible bi-ideal is an irreducible bi-ideal.

Theorem 3.2. The intersection of any family of prime bi-ideals of S is a semiprime bi-ideal.

Proof. Let $\{P_i| i \in \Lambda\}$ be the family of prime bi-ideals of S. For any bi-ideal B of S, $B^2 \subseteq \bigcap_i P_i$ implies $B^2 \subseteq P_i$, for all $i \in \Lambda$. As P_i are prime bi-ideals, P_i are semiprime bi-ideals. Therefore $B \subseteq P_i$, for all $i \in \Lambda$. Hence $B \subseteq \bigcap_i P_i$. □

Theorem 3.3. Every strongly irreducible, semiprime bi-ideal of S is a strongly prime bi-ideal.

Proof. Let B be a strongly irreducible and semiprime bi-ideal of S. For any bi-ideals B_1 and B_2 of S, $(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B$. Hence by Theorem 3.1(3), $B_1 \cap B_2$ is a bi-ideal of S. Since

$$(B_1 \cap B_2)^2 = (B_1 \cap B_2) \Gamma (B_1 \cap B_2) \subseteq B_1 \Gamma B_2.$$

Similarly we get $(B_1 \cap B_2)^2 \subseteq B_2 \Gamma B_1$. Therefore

$$(B_1 \cap B_2)^2 \subseteq (B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B.$$

As B is a semiprime bi-ideal of S, $B_1 \cap B_2 \subseteq B$. But B is a strongly irreducible bi-ideal. Therefore $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence B is a strongly prime bi-ideal of S. □

Theorem 3.4. If B is a bi-ideal of S and $a \in S$ such that $a \notin B$, then there exists an irreducible bi-ideal I of S such that $B \subseteq I$ and $a \notin I$.

Proof. Let B be the family of all bi-ideals of S which contain B but do not contain an element a. Then B is a non-empty as $B \in B$. This family of all bi-ideals of S forms a partially ordered set under the inclusion of sets. Hence by Zorn’s lemma, there exists a maximal bi-ideal say I in B. Therefore $B \subseteq I$ and $a \notin I$. Now to show that I is an irreducible bi-ideal of S. Let C and D be any two bi-ideals of S such that $C \cap D = I$. Suppose that C and D both contain I properly. But I is a maximal bi-ideal in B. Hence we get $a \in C$ and $a \in D$. Therefore $a \in C \cap D = I$ which is absurd. Thus either $C = I$ or $D = I$. Therefore I is an irreducible bi-ideal of S. □

Theorem 3.5. Any proper bi-ideal B of S is the intersection of all irreducible bi-ideals of S containing B.
Suppose that \(a \in S \). Then \(2a \subseteq S \). But always \(R \) be a left ideal of \(L \). Therefore by (2), be any two bi-ideals of \(a \). Similarly we have \(B_1 \cap B_2 \subseteq B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \). Hence \(B_1 \cap B_2 \subseteq (B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \). By Theorem 3.1(7), \(B_1 \Gamma B_2 \) and \(B_2 \Gamma B_1 \) are bi-ideals of \(S \). Therefore by Theorem 3.1(3), \((B_1 \Gamma B_2) \cap (B_2 \Gamma B_1)\) is a bi-ideal of \(S \). Hence by (2),

\[(B_1 \cap B_2)^2 = B_1 \cap B_2 \cap B_1 \Gamma B_2 \subseteq B_1 \Gamma B_2 \cap (B_1 \cap B_2)^2 \subseteq (B_1 \cap B_2)(B_1 \cap B_2) \subseteq B_1 \Gamma B_2. \]
Similarly we show that

\[(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) = ((B_1 \Gamma B_2) \cap (B_2 \Gamma B_1)) \Gamma (B_1 \Gamma B_2) \cap (B_2 \Gamma B_1)).\]

\[(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq (B_1 \Gamma B_2) \Gamma (B_2 \Gamma B_1) \subseteq B_1 \Gamma S \Gamma B_1 \subseteq B_1.\]

Similarly we show that

\[(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B_2. \text{ Thus } (B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B_1 \cap B_2. \text{ Hence } B_1 \cap B_2 = (B_1 \Gamma B_2) \cap (B_2 \Gamma B_1).\]

(3) \(\Rightarrow\) (4) Let \(B\) be any bi-ideal of \(S\). Suppose that \(B\) is a strongly irreducible bi-ideal of \(S\) and \(B\) is a strongly prime bi-ideal of \(S\). Therefore by (3), we have

\[B_1 = B_1 \cap B_1 = (B_1 \Gamma B_1) \cap (B_1 \Gamma B_1) = B_1 \Gamma B_1 \subseteq B.\]

Hence every bi-ideal of \(S\) is semiprime.

(4) \(\Rightarrow\) (5) Let \(B\) be a proper bi-ideal of \(S\). Hence by the Theorem 3.5, \(B\) is the intersection of all proper irreducible bi-ideals of \(S\) which contains \(B\). By assumption every bi-ideal of \(S\) is semiprime. Hence each proper bi-ideal of \(S\) is the intersection of irreducible semiprime bi-ideals of \(S\) which contain it.

(5) \(\Rightarrow\) (2) Let \(B\) be a bi-ideal of \(S\). If \(B^2 = S\), then clearly result holds. Suppose that \(B^2 \neq S\). Then \(B^2\) is a proper bi-ideal of \(S\). Hence by assumption, \(B^2\) is the intersection of irreducible semiprime bi-ideals of \(S\) which contain it. \(B^2 = \cap \{B_i/ B_i \text{ is an irreducible semiprime bi-ideal}\}\). As each \(B_i\) is a semiprime bi-ideal, \(B \subseteq B_i\), for all \(i\). Therefore \(B \subseteq \bigcap_i B_i = B^2\). \(B^2 \subseteq B\) always. Hence we have \(B^2 = B\).

Thus we get \(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (2) \Rightarrow (1)\). Hence all the statements are equivalent.

\textbf{Theorem 3.7.} Let \(S\) be a regular and intra-regular \(\Gamma\)-semiring. Then for any bi-ideal \(B\) of \(S\), \(B\) is strongly irreducible bi-ideal if and only if \(B\) is strongly prime bi-ideal.

\textbf{Proof.} Let \(S\) be a regular and intra-regular \(\Gamma\)-semiring. Suppose that \(B\) is a strongly irreducible bi-ideal of \(S\). To show that \(B\) is a strongly prime bi-ideal of \(S\). Let \(B_1\) and \(B_2\) be any two bi-ideals of \(S\) such that \((B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B\). By Theorem 3.6, \((B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) = B_1 \cap B_2\). Hence \(B_1 \cap B_2 \subseteq B\). But \(B\) is a strongly irreducible bi-ideal of \(S\). Therefore \(B_1 \subseteq B\) or \(B_2 \subseteq B\). Thus \(B\) is a strongly prime bi-ideal of \(S\).

Conversely, suppose that \(B\) is a strongly prime bi-ideal of \(S\). Let \(B_1\) and \(B_2\) be any two bi-ideals of \(S\) such that \(B_1 \cap B_2 \subseteq B\) and \((B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) = B_1 \cap B_2 \subseteq B\). As \(B\) is a strongly prime bi-ideal, \(B_1 \subseteq B\) or \(B_2 \subseteq B\). Therefore \(B\) is a strongly irreducible bi-ideal of \(S\).

\textbf{Theorem 3.8.} Every bi-ideal of \(S\) is a strongly prime bi-ideal if and only if \(S\) is both regular and intra-regular and the set of bi-ideals of \(S\) is a totally ordered set under the inclusion of sets.

\textbf{Proof.} Suppose that every bi-ideal of \(S\) is a strongly prime bi-ideal. Then every bi-ideal of \(S\) is a semiprime bi-ideal. Hence by the Theorem 3.6, \(S\) is regular and intra-regular. To show that the set of bi-ideals of \(S\) is a totally ordered set under inclusion of sets. Let \(B_1\) and \(B_2\) be any two bi-ideals of \(S\) from the set of bi-ideals of \(S\). \(B_1 \cap B_2\) is also a bi-ideal of \(S\) (see Theorem 3.1(3)). Hence by
assumption \(B_1 \cap B_2 \) is a strongly prime bi-ideal of \(S \). Therefore by Theorem 3.6,
\[(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) = B_1 \cap B_2 \subseteq B_1 \cap B_2.\] Then \(B_1 \subseteq B_1 \cap B_2 \) or \(B_2 \subseteq B_1 \cap B_2 \).
Therefore \(B_1 \cap B_2 = B_1 \) or \(B_1 \cap B_2 = B_2 \). Thus either \(B_1 \subseteq B_2 \) or \(B_2 \subseteq B_1 \). This shows that the set of bi-ideals of \(S \) is a totally ordered set under inclusion of sets.

Conversely, suppose that \(S \) is regular, intra-regular and the set of bi-ideals of \(S \) is a totally ordered set under inclusion of sets. Let \(B \) be any bi-ideal of \(S \). \(B_1 \) and \(B_2 \) be any two bi-ideals of \(S \) such that \((B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B \). By the Theorem 3.6, we have \((B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) = B_1 \cap B_2 \). Therefore \(B_1 \cap B_2 \subseteq B \). But by assumption either \(B_1 \subseteq B_2 \) or \(B_2 \subseteq B_1 \). Hence \(B_1 \cap B_2 = B_1 \) or \(B_1 \cap B_2 = B_2 \). Therefore \(B_1 \subseteq B \) or \(B_2 \subseteq B \). Therefore \(B \) is a strongly prime bi-ideal of \(S \).

Theorem 3.9. If the set of bi-ideals of \(S \) is a totally ordered set under inclusion of sets, then every bi-ideal of \(S \) is a strongly prime if and only if every bi-ideal of \(S \) is prime.

Proof. Let the set of bi-ideals of \(S \) be a totally ordered set under inclusion of sets. As every strongly prime bi-ideal of \(S \) is prime, the proof of only if part is obvious.

Conversely, suppose that every bi-ideal of \(S \) is prime. Then every bi-ideal of \(S \) is semiprime. Hence by the Theorem 3.6, \(S \) is both regular and intra-regular. Again by Theorem 3.8, every bi-ideal of \(S \) is a strongly prime bi-ideal.

Theorem 3.10. If the set of bi-ideals of \(S \) is a totally ordered set under inclusion of sets, then \(S \) is both regular and intra-regular if and only if each bi-ideal of \(S \) is prime.

Proof. Let the set of all bi-ideals of \(S \) be a totally ordered set under inclusion of sets. Suppose \(S \) is both regular and intra-regular. Let \(B \) be any bi-ideal of \(S \). For any bi-ideals \(B_1 \) and \(B_2 \) of \(S \), \(B_1 \Gamma B_2 \subseteq B \). By the assumption we have either \(B_1 \subseteq B_2 \) or \(B_2 \subseteq B_1 \). Assume \(B_1 \subseteq B_2 \). Then \(B_1 \Gamma B_1 \subseteq B_1 \Gamma B_2 \subseteq B \). Hence by Theorem 3.6, \(B \) is a semiprime bi-ideal of \(S \). Therefore \(B_1 \subseteq B \). Hence \(B \) is a prime bi-ideal of \(S \).

Conversely, suppose that every bi-ideal of \(S \) is prime. Hence every bi-ideal of \(S \) is semiprime. Therefore by Theorem 3.6, \(S \) is both regular and intra-regular.

Theorem 3.11. Following statements are equivalents in \(S \).

1. The set of bi-ideals of \(S \) is totally ordered set under inclusion of sets.
2. Each bi-ideal of \(S \) is strongly irreducible.
3. Each bi-ideal of \(S \) is irreducible.

Proof. (1) \(\Rightarrow \) (2). Suppose that the set of bi-ideals of \(S \) is a totally ordered set under inclusion of sets. Let \(B \) be any bi-ideal of \(S \). To show that \(B \) is a strongly irreducible bi-ideal of \(S \). Let \(B_1 \) and \(B_2 \) be any two bi-ideals of \(S \) such that \(B_1 \cap B_2 \subseteq B \). But by the hypothesis we have either \(B_1 \subseteq B_2 \) or \(B_2 \subseteq B_1 \). Therefore \(B_1 \cap B_2 = B_1 \) or \(B_1 \cap B_2 = B_2 \). Hence \(B_1 \subseteq B \) or \(B_2 \subseteq B \). Thus \(B \) is a strongly irreducible bi-ideal of \(S \).

(2) \(\Rightarrow \) (3) Suppose that each bi-ideal of \(S \) is strongly irreducible. Let \(B \) be any bi-ideal of \(S \) such that \(B = B_1 \cap B_2 \), for any bi-ideals \(B_1 \) and \(B_2 \) of \(S \). Hence by
(2) we have \(B_1 \subseteq B \) or \(B_2 \subseteq B \). As \(B \subseteq B_1 \) and \(B \subseteq B_2 \), we have \(B_1 = B \) or \(B_2 = B \). Hence \(B \) is an irreducible bi-ideal of \(S \).

(3) \(\Rightarrow \) (1) Suppose that each bi-ideal of \(S \) is an irreducible bi-ideal. Let \(B_1 \) and \(B_2 \) be any two bi-ideals of \(S \). Then \(B_1 \cap B_2 \) is also a bi-ideal of \(S \) (see Theorem 3.1(3)). Hence \(B_1 \cap B_2 = B_1 \cap B_2 \) implies \(B_1 \cap B_2 = B_1 \) or \(B_1 \cap B_2 = B_2 \) by assumption. Therefore either \(B_1 \subseteq B_2 \) or \(B_2 \subseteq B_1 \). This shows that the set of bi-ideals of \(S \) is a totally ordered set under inclusion of sets.

Theorem 3.12. A prime bi-ideal \(B \) of \(S \) is a prime one sided ideal of \(S \).

Proof. Let \(B \) be a prime bi-ideal of \(S \). Suppose \(B \) is not a one sided ideal of \(S \). Therefore \(B \Gamma S \not\subseteq B \) and \(STB \not\subseteq B \). As \(B \) is a prime bi-ideal

\[
(B \Gamma S) \Gamma (STB) \not\subseteq B,
\]

which is a contradiction. Therefore \(B \Gamma S \subseteq B \) or \(STB \subseteq B \). Hence \(B \) is a prime one sided ideal of \(S \).

Theorem 3.13. A bi-ideal \(B \) of \(S \) is prime if and only if for a right ideal \(R \) and a left ideal \(L \) of \(S \), \(R \Gamma L \subseteq B \) implies \(R \subseteq B \) or \(L \subseteq B \).

Proof. Suppose that a bi-ideal of \(S \) is a prime bi-ideal of \(S \). Let \(R \) be a right ideal and \(L \) be a left ideal of \(S \) such that \(R \Gamma L \subseteq B \). Itself \(R \) and \(L \) are bi-ideals of \(S \) (see Theorem 3.1(2)). Hence \(R \subseteq B \) or \(L \subseteq B \). Conversely, we have to show that a bi-ideal \(B \) of \(S \) is a prime bi-ideal of \(S \). Let \(A \) and \(C \) be any two bi-ideals of \(S \) such that \(A \Gamma C \subseteq B \). For any \(a \in A \) and \(c \in C \), \((a)_r \subseteq A \) and \((c)_l \subseteq C \), where \((a)_r \) and \((c)_l \) denotes the right ideal and left ideal generated by \(a \) and \(c \) respectively. Therefore \((a)_r \Gamma (c)_l \subseteq A \Gamma C \subseteq B \). Hence by the assumption, \((a)_r \subseteq B \) or \((c)_l \subseteq B \). Therefore \(a \in B \) or \(c \in B \). Thus \(A \subseteq B \) or \(C \subseteq B \). Hence \(B \) is a prime bi-ideal of \(S \).

Theorem 3.14. If \(B \) is a strongly irreducible bi-ideal of a regular and intra-regular \(\Gamma \)-semiring \(S \), then \(B \) is a prime bi-ideal.

Proof. Let \(B \) be a strongly irreducible bi-ideal of a regular and intra-regular \(\Gamma \)-semiring \(S \). Let \(B_1 \) and \(B_2 \) be any two bi-ideals of \(S \) such that \(B_1 \Gamma B_2 \subseteq B \). \(B_1 \cap B_2 \) is also a bi-ideal of \(S \) (see Theorem 3.1(3)). Therefore by Theorem 3.6,

\[
(B_1 \cap B_2)^2 = (B_1 \cap B_2).
\]

Hence \(B_1 \cap B_2 = (B_1 \cap B_2)^2 = (B_1 \cap B_2) \Gamma (B_1 \cap B_2) \subseteq B_1 \Gamma B_2 \subseteq B \). As \(B \) is a strongly irreducible bi-ideal of \(S \), we have \(B_1 \subseteq B \) or \(B_2 \subseteq B \). Hence \(B \) is a prime bi-ideal of \(S \).

4. Space of Strongly Prime Bi-ideals

Let \(B \) be the family of all bi-ideals of \(S \). \(B \) is a partially ordered set under the inclusion of sets. Clearly \(B \) is a complete lattice under \(\lor \) and \(\land \) defined by

\[
B_1 \lor B_2 = B_1 + B_2 = (B_1 \cup B_2)_b \quad \text{and} \quad B_1 \land B_2 = B_1 \cap B_2, \quad \text{for all} \quad B_1, B_2 \in B.
\]

Let \(S \) be a \(\Gamma \)-semiring and \(\varphi_S \) be the set of all strongly prime bi-ideals of \(S \). For each bi-ideal \(B \) of \(S \) define
\[\Theta_B = \{ J \in \varphi_S/B \nsubseteq J \} \text{ and } \zeta(\varphi_S) = \{ \Theta_B/B \text{ is a bi-ideal of } S \} \]

Theorem 4.1. If \(S \) is both regular and intra-regular, then \(\zeta(\varphi_S) \) forms a topology on the set \(\varphi_S \). There is an isomorphism between lattice of bi-ideals \(B \) and \(\zeta(\varphi_S) \), the lattice of open subsets of \(\varphi_S \).

Proof. Since \(\{0\} \) is a bi-ideal of \(S \) and each bi-ideal of \(S \) contains \(\{0\} \). Hence \(\Theta_{\{0\}} = \{ J \in \varphi_S/\{0\} \nsubseteq J \} = \Phi \). Therefore \(\Theta_{\{0\}} = \Phi \in \zeta(\varphi_S) \). As \(S \) itself bi-ideal, \(\Theta_S = \{ J \in \varphi_S/S \nsubseteq J \} = \varphi_S \) implies \(\varphi_S = \Theta_S \in \zeta(\varphi_S) \). Now let \(\Theta_{B_k} \in \zeta(\varphi_S) \), for \(k \in \Lambda \) (\(\Lambda \) is an indexing set) and \(B_k \) is a bi-ideal of \(S \). Therefore \(\Theta_{B_k} = \{ J \in \varphi_S/B_k \nsubseteq J \} \).

At the other hand, we have

\[\bigcup_{k \in \Lambda} \Theta_{B_k} = \bigcup_{k \in \Lambda} \{ J \in \varphi_S/B_k \nsubseteq J \} = \{ J \in \varphi_S/B_k \nsubseteq J \text{ for some } k \in \Lambda \} \]

Hence

\[\bigcup_{k \in \Lambda} \Theta_{B_k} = \{ J \in \varphi_S/\bigcup_{k \in \Lambda} B_k \nsubseteq J \} \]

where \(\bigcup_{k \in \Lambda} B_k \) denotes the bi-ideal of \(S \) generated \(\bigcup_{k \in \Lambda} B_k \). Therefore

\[\bigcup_{k \in \Lambda} \Theta_{B_k} = \Theta_{\bigcup_{k \in \Lambda} B_k} \in \zeta(\varphi_S) \]

Further let \(\Theta_A, \Theta_B \in \zeta(\varphi_S) \). Let \(J \in \Theta_A \bigcap \Theta_B \) imply \(J \in \Theta_A \) and \(J \in \Theta_B \). Then \(A \nsubseteq J \) and \(B \nsubseteq J \). Suppose that \(A \bigcap B \subseteq J \). As \(S \) is both regular and intra-regular hence by the Theorem 3.6, \(A \bigcap B = (A \bigcap B) \bigcap (B \bigcap A) \). Therefore \((A \bigcap B) \bigcap (B \bigcap A) \subseteq J \) and \(J \) is a strongly prime bi-ideal of \(S \) imply \(A \subseteq J \) or \(B \subseteq J \), which is a contradiction to \(A \nsubseteq J \) and \(B \nsubseteq J \). Hence \(A \bigcap B \nsubseteq J \) implies \(J \in \Theta_{A \bigcap B} \). Therefore \(\Theta_A \bigcap \Theta_B \subseteq \Theta_{A \bigcap B} \). Now let \(J \in \Theta_{A \bigcap B} \). Then \(A \bigcap B \nsubseteq J \) implies \(A \nsubseteq J \) and \(B \nsubseteq J \). Therefore \(J \in \Theta_A \) and \(J \in \Theta_B \) imply \(J \in \Theta_A \bigcap \Theta_B \). Thus \(\Theta_A \bigcap \Theta_B \subseteq \Theta_A \bigcap \Theta_B \). Therefore we get \(\Theta_A \bigcap \Theta_B = \Theta_{A \bigcap B} \in \zeta(\varphi_S) \). Hence \(\zeta(\varphi_S) \) forms a topology on the set \(\varphi_S \).

Now we define a function \(\phi : B \longrightarrow \zeta(\varphi_S) \) such that \(\phi(B) = \Theta_B \). Let \(A, B \in B \). Then

\[\phi(A \bigcap B) = \Theta_{A \bigcap B} = \Theta_A \bigcap \Theta_B = \phi(A) \bigcap \phi(B) \]

and

\[\phi(A + B) = \phi(A \bigcup B) = \Theta_{(A \bigcup B)_k} = \Theta_A \bigcup \Theta_B = \phi(A) \bigcup \phi(B) \]

Therefore \(\phi \) is a lattice homomorphism. Now let \(\phi(A) = \phi(B) \). Hence we have \(\Theta_A = \Theta_B \). Suppose that \(A \neq B \). Then there exists \(a \in A \) such that \(a \notin B \). As \(B \) is a proper bi-ideal of \(S \), by Theorem 3.4, there exists an irreducible bi-ideal \(J \) of \(S \) such that \(B \subseteq J \) and \(a \notin J \). By the Theorem 3.11, the set of all bi-ideals of \(S \) is totally ordered under inclusion of sets and also by the Theorem 3.8, \(J \) is a strongly prime bi-ideal of \(S \). Hence \(A \nsubseteq J \) or \(J \in \Theta_A \) implies \(B \nsubseteq J \). This contradicts to \(B \subseteq J \). Therefore \(A = B \). Hence \(\phi \) is a lattice isomorphism. \(\square \)
Remark 4.1. In the same way we can construct the space \(\mathcal{S} \) of strongly irreducible bi-ideals of \(S \).

Acknowledgement. Author is thankful for the learned referee for his valuable suggestions.

References

Received by editors 04.06.2016; Revised version 05.10.2016; Available online 10.10.2016.

Y. C. College of Science, Karad, Maharashtra state, India - (PIN)
E-mail address: ravindrajagatap@yahoo.co.in

Manas-491, R. K. Nagar, Kolhapur, Maharashtra, India - 416013.
E-mail address: yspawar1950@gmail.com