MAXIMUM INDEPENDENT SET COVER PEBBLING NUMBER OF COMPLETE GRAPHS AND PATHS

A.LOURDUSAMY¹, C. MUTHULAKSHMI @ SASIKALA², AND T. MATHIVANAN³

1,3 Department of Mathematics,
St.Xavier's College (Autonomous),
Palayamkottai-627 002, India.

2 Department of Mathematics,
Sri Paramakalyani College,
Alwarkurichi-627412, India.

1 lourdugnanam@hotmail.com
2 kalasasispkc@gmail.com
3 tahit_van_man@yahoo.com

Abstract. A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. A graph is said to be cover pebbled if every vertex has a pebble on it after a sequence of pebbling moves. The maximum independent set cover pebbling number, ρ(G), of a graph G is the minimum number of pebbles that are placed on V(G) such that after a sequence of pebbling moves, the set of vertices with pebbles forms a maximum independent set of G, regardless of their initial configuration. In this paper, we determine the maximum independent set cover pebbling number of complete graph and paths.

Keywords: Graph pebbling, cover pebbling, maximum independent set, complete graph and path.

2010 Mathematics Subject Classification: 05C05, 05C69, 05C99

(Received : 23rd December 2014 ; Accepted : 20th March 2015)
1. INTRODUCTION

Graphs considered here are simple, finite, undirected, and connected. Given a graph G, distribute k pebbles on its vertices in some configuration. A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex in which each move takes place along a path. The pebbling number [1], $\pi(G)$, of a graph G is the minimum number of pebbles that are placed on $V(G)$, such that after a sequence of pebbling moves, a pebble can be moved to any root vertex v in G regardless of the initial configuration. One can find the survey of graph pebbling in [3]. The cover pebbling number [2], $\gamma(G)$ of a graph G is defined as the minimum number of pebbles needed to place a pebble on every vertex of a graph G using a sequence of pebbling moves, regardless of the initial configuration. A set S of vertices in a graph G is said to be independent set (or an internally stable set) if no two vertices in the set S are adjacent. An independent set S is maximum if G has no independent set S' with $|S'| > |S|$. In [4], we have introduced the concept of maximum independent set cover pebbling number. The maximum independent set cover pebbling number, $\rho(G)$ of a graph G, is the minimum number of pebbles that are placed on $V(G)$ such that after a sequence of pebbling moves, the set of vertices with pebbles forms a maximum independent set of G, regardless of their initial configuration. We have determined the maximum independent pebbling number of some families of graphs in [4, 5, 6]. In this paper, we determine the maximum independent set cover pebbling number $\rho(G)$ for complete graphs and path graphs.

Notation 1.1. For any vertex a of G, $f(a)$ denotes the number of pebbles placed at the vertex a.

Notation 1.2. For $a, b \in V(G)$ and $ab \in E(G)$, $a \rightarrow b$ refers to moving m pebbles to b from a.

Notation 1.3. Throughout this paper we denote $V(K_n) = \{v_1, v_2, \ldots, v_n\}$ and P_n denotes the path v_1, v_2, \ldots, v_n.

2. MAXIMUM INDEPENDENT SET COVER PEBBLING NUMBER OF K_n AND P_n

Let us now find the maximum independent set cover pebbling number of complete graph K_n. Clearly $\rho(K_1) = 1$. We may get a feeling that, when we place a pebble on any of the vertices of K_n, $n \geq 2$, we get a maximum independent set cover pebbling. Since the maximum independent set cover pebbling number is the least possible integer, it should imply that we should get a
maximum independent set cover pebbling for any number of pebbles greater than the maximum independent set cover pebbling number. In the case of the complete graph $K_n \ (n \geq 2)$, the number of pebbles between 2 and n will not yield the property of maximum independent set cover pebbling.

Now we prove that $\rho (K_n) = n + 1$ for all $n \geq 2$.

Theorem 2.1. For K_n, $\rho (K_n) = n + 1 \ (n \geq 2)$.

Proof. Suppose a pebble is placed on each of the vertices v_1, v_2, \ldots, v_n of K_n. Then we cannot cover a maximum independent set of K_n. Hence $\rho(K_n) > n$.

We use induction on n to show that $\rho(K_n) \leq n + 1$. First we prove that the theorem is true for $n = 2$. Consider the distribution of three pebbles on the vertices of K_2. If we place three pebbles on a single vertex, say v_1, then we are done. Otherwise by pigeonhole principle, there exists a vertex, say v_1, with exactly two pebbles. Then moving a pebble to v_2 from v_1 covers a maximum independent set of K_2. Thus $\rho(K_n) \leq 3$. Now consider the distribution of $n + 1$ pebbles on the vertices of $K_n \ (n > 2)$. By pigeonhole principle, there exists a vertex, say v_1, with at least two pebbles.

Case 1. $f(v_1) = 2$.

We move a pebble to the vertex v_2 from v_1. Clearly $f(V(K_n)-\{v_1\}) = n$, and the induced sub graph of $V(K_n)-\{v_1\}$ is K_{n-1}. Hence we are done by induction.

Case 2. $f(v_1) > 2$.

In this case, it is easy to see that there is a vertex, say $v_i \ (i \neq 1)$ with zero pebbles. Then $f(V(K_n)-\{v_i\}) = n + 1$ and the induced sub graph of $V(K_n)-\{v_i\}$ is K_{n-1}. Hence we are done by induction. Thus $\rho(K_n) \leq n + 1$.

Let us now compute the maximum independent set cover pebbling number of a path P_n on n vertices. Since P_2 is isomorphic to K_2, $\rho (P_2) = 3$.

Theorem 2.2. For P_3, $\rho (P_3) = 6$.

Proof. Consider the following configuration: $f(v_2) = 5$ and $f(v_1) = f(v_3) = 0$. Then we cannot cover the maximum independent set of P_3. Thus $\rho (P_3) \geq 6$.

Now consider the distribution of six pebbles on the vertices of P_3.

A.LOURDUSAMY, C. MUTHULAKSHMI @ SASIKALA, AND T. MATHIVANAN 21
Case 1. $1 \leq f(v_3) \leq 3$.

This implies that the path v_1v_2 contains at least three pebbles and hence we are done since $\rho(P_2) = 3$, except for the distribution $f(v_3) = 3$. In this case consider the following sequence of pebbling moves: $v_3 \rightarrow v_2 \rightarrow v_1$ and hence we are done.

Case 2. $f(v_3) = 0$.

We need at most four pebbles to put a pebble on v_3 from the vertices of $V(P_3) - \{v_3\}$. If we use three or four pebbles to pebble v_3 then we are done. Otherwise, $f(v_2) \geq 2$. If $f(v_2) = 2$ or $f(v_3) = 4$ then we are done by moving one or two pebbles to v_3 from v_2. If $f(v_2) = 6$ then we move a pebble to v_1 and two pebbles to v_3. For $f(v_2) = 3$ or $f(v_2) = 5$, we use two pebbles from v_2 to put a pebble at v_3. Then we can move all the pebbles from v_2 to v_1 using the pebbles at v_1 so that v_1 receives at least one pebble and hence we are done.

Case 3. $f(v_3) \geq 4$.

If $f(v_1) = 0$, then we apply Case 2. Let $f(v_1) \geq 1$. Then $f(v_2) \leq 1$. Suppose $f(v_2) = 0$. Then we are done. If $f(v_2) = 1$, then we move a pebble to v_2 from v_3 and then a pebble can be moved to v_1 from v_2 and hence we are done.

Thus $\rho(P_3) \leq 6$.

Theorem 2.3. For P_4, $\rho(P_4) = 6$.

Proof. Consider the following distribution: $f(v_1) = f(v_2) = 1$; $f(v_3) = 0$; $f(v_4) = 3$. Then we cannot cover a maximum independent set of P_4. Hence $\rho(P_4) > 5$. Now consider the distribution of six pebbles on the vertices of P_4. Let P_A be the subgraph induced by the vertices v_1, v_2 and let P_B be the subgraph induced by the vertices v_3, v_4. According to the distributions of six pebbles on the vertices of P_A and P_B, we consider the following two cases:
1. Both P_A and P_B contain exactly three pebbles.
2. Any one of P_A and P_B, say P_A, contains at most two pebbles.

Case 1. Both the paths P_A and P_B receive exactly three pebbles each.

Clearly we are done since $\rho(P_A) = \rho(P_B) = \rho(P_2) = 3$, except for the distribution $f(v_2) = f(v_3) = 3$. Now we consider the following pebbling moves: $v_3 \rightarrow v_2 \rightarrow v_1$ and hence we are done.

Case 2. Assume that P_A contains at most two pebbles.

Subcase 2.1. Assume $f(P_A) = 0$.

Then $f(P_B) = 6$ and we are done since $f(P_B \cup \{v_2\}) = 6$ and $P_B \cup \{v_2\}$ is isomorphic to P_3.
Subcase 2.2. Assume that P_A has a pebble on it.

Then P_B contains five pebbles. If $f(v_1) = 1$, then clearly we are done. So, assume that $f(v_2) = 1$. Then $f(P_B \cup \{v_2\}) = 6$ and $\rho(P_3) = 6$ and hence we are done.

Subcase 2.3. Assume that P_A has two pebbles.

Then P_B contains four pebbles. If $f(v_1) = 2$ or $f(v_2) = 2$, then clearly we are done. Let $f(v_1) = 1$ and $f(v_2) = 1$. If $f(v_3) \geq 2$, then we are done. If $f(v_3) = 1$, then $f(v_4) = 3$. Consider the following pebbling moves: $v_4 \rightarrow v_3 \rightarrow v_2 \rightarrow v_1$ and we are done. If $f(v_3) = 0$, then $f(v_4) = 4$. Consider the following pebbling moves: $v_4 \rightarrow v_3 \rightarrow v_2 \rightarrow v_3$ and hence we are done.

Thus $\rho(P_4) \leq 6$.

Theorem 2.4. For P_5, $\rho(P_5) = 21$.

Proof. Consider the following configuration: $f(v_5) = 20$, $f(v) = 0$ for all $v \in V(P_5) \setminus \{v_5\}$. Then we cannot cover the maximum independent set of P_5. Hence $\rho(P_5) > 20$. Let us consider the distribution of twenty one pebbles on the vertices of P_5 and different cases are discussed below.

For that, let P_A be the subgraph induced by the vertices v_1 and v_2 and P_B be the subgraph induced by the vertices v_3, v_4 and v_5.

Case 1. $f(P_A) \leq 2$.

Then $f(P_B) \geq 19$. Let $f(P_A) = 2$. If $f(v_1) = 2$ or $f(v_2) = 2$, then clearly we are done. So assume that $f(v_1) = 1$ and $f(v_2) = 1$. Using at most eight pebbles we can move a pebble to v_2 and then move a pebble to v_1. Hence the number of pebbles in v_2 is zero and we are done since $f(P_B) \geq 11$ and $\rho(P_B) = 6$. Let $f(P_A) = 1$. Clearly we are done if $f(v_1) = 1$. Assume that $f(v_2) = 1$. Using at most eight pebbles from P_B, we can move a pebble to v_1, so that $f(v_2)$ becomes zero. Hence we are done, since $f(P_B) \geq 12$ and $\rho(P_B) = 6$. Let $f(P_A) = 0$. Using at most sixteen pebbles we can place a pebble on v_1. Then $f(P_B) \geq 5$. If $f(P_B) \geq 6$, then clearly we are done since $\rho(P_B) = 6$. If $f(P_B) = 5$ then $f(v_5) = 5$ and hence we are done.

Case 2. Assume $f(P_B) \leq 5$.

Then $f(P_A) \geq 16$. If $3 \leq f(P_B) \leq 5$, then clearly we are done. Let $f(P_B) \leq 2$. This implies that $f(P_A) \geq 19$. If $f(P_B) = 2$ then also we are done. Assume that $f(P_B) = 1$. Using at most sixteen pebbles from P_A, we can put one pebble each on v_3 and v_5 so that v_4 has zero pebbles on it. Then $f(P_A) \geq 4$ and we are done. If $f(P_B) = 0$, then we can cover the maximum independent set of P_5 easily.
Case 3. Assume $f(P_A) \geq 3$ and $f(P_B) \geq 6$.

Clearly we are done except for the distribution $f(v_1) = 0$, $f(v_2) = 3$ and $f(P_B) = 18$. Using at most eight pebbles we can move a pebble to v_2 and then move two pebbles to v_1 from v_2. Hence we are done, since $\rho(P_3) = 6$ and $f(P_3) \geq 10$.

Thus $\rho(P_5) \leq 21$.

Theorem 2.5. For P_6, $\rho(P_6) = 21$.

Proof. Consider the following configuration: $f(v_6) = 20$, $f(v) = 0$ for all $V(G) \setminus \{v_6\}$. Then we cannot cover a maximum independent set of P_6. Hence $\rho(P_6) > 20$.

Now consider the distribution of twenty one pebbles on the vertices of P_6. Let P_A be the subgraph induced by the vertices v_1 and v_2. Let P_B be the subgraph induced by the vertices v_3, v_4, v_5 and v_6. According to the distribution of these twenty one pebbles on the vertices of P_A and P_B, we find the following case:

Case 1. If $f(P_A) \leq 2$, then $f(P_B) \geq 19$.

Let $f(P_A) = 2$. If $f(v_1) = 2$ or $f(v_2) = 2$ then clearly we are done. So assume that $f(v_1) = 1$ and $f(v_2) = 1$. Then $f(P_B) = 19$. If $f(v_3) \geq 2$ then a pebble can be moved to v_2 from v_3 and then a pebble can be moved to v_3 from v_2. Then $f(P_B) \geq 18$ and we are done since $\rho(P_B) = \rho(P_4) = 6$. Assume $f(v_3) \leq 1$. If $f(v_3) = 1$, using at most eight pebbles from P_B we can move a pebble to v_3. And from v_3, a pebble can be moved to v_2 and then we can move a pebble to v_3 from v_2. Now $f(P_B) \geq 12$ and hence we are done since $\rho(P_B) = \rho(P_4) = 6$. If $f(v_3) = 0$, then using at most sixteen pebbles from P_B we can move a pebble to v_3. After moving a pebble to v_2 from P_B, if $f(P_B) \geq 6$ then we move a pebble to v_1 from v_2. If $3 \leq f(P_B) \leq 5$, then we move a pebble to v_3 from v_2. Clearly we are done, since v_6 is the only vertex contained 3 or 4 or 5 pebbles on it. Let $f(P_A) = 1$. If $f(v_1) = 1$ then we are done since $f(P_B) = 20$ and $\rho(P_B) = 6$. Similarly we are done if $f(v_2) = 1$. Let $f(P_A) = 0$. Then $f(P_B) = 21$. Clearly we are done since $f(P_B \cup \{v_2\}) = 21$ and $\rho(P_5) = 21$.

Case 2. If $f(P_B) \leq 5$, then $f(P_A) \geq 16$.

If $3 \leq f(P_B) \leq 5$, then using at most twelve pebbles, we move at most three pebbles to v_3 from P_A, so $f(P_B) \geq 6$ and we are done. Then $f(P_A) \geq 4$, hence we can pebble the maximum
independent set of P_A, since $\rho(P_A) = 3$. If $f(P_B) = 2$, then $f(P_A) = 19$. Using at most sixteen pebbles from P_A we can cover the maximum independent set of P_6. Assume that $f(P_B) = 1$. Then $f(P_A) = 20$. Suppose $f(v_6) = 0$ and $f(v_i) = 1$ for some $i = 3, 4, 5$. Then we are done since $\rho(P_6 - \{v_6\}) = \rho(P_5) = 21$. Suppose $f(v_6) = 1$ and $f(v_i) = 0$ for all $i = 3, 4, 5$. Then using six pebbles we can cover maximum independent set of $P_6 - \{v_5, v_6\}$ and we are done. If $f(P_B) = 0$, then we are done since $\rho(P_6 - \{v_6\}) = \rho(P_5) = 21$.

Case 3. $f(P_A) \geq 3$ and $f(P_B) \geq 6$.

Clearly we are done except for the distribution $f(v_1) = 0$, $f(v_2) = 3$ and $f(P_B) = 18$. Since $f(P_B \cup \{v_2\}) = 21$ and $\rho(P_5) = 21$, we are done in this distribution also.

Hence $\rho(P_6) \leq 21$.

Theorem 2.6. For $P_n (n \geq 5)$, $\rho(P_n) =$

\[
\begin{cases}
\frac{2^{n-1}}{3} & \text{if } n \text{ is even} \\
\frac{2^{n+1} - 1}{3} & \text{if } n \text{ is odd}
\end{cases}
\]

Proof. Consider the configuration where all pebbles are placed on the vertex v_1.

Clearly, we need at least

\[
\begin{cases}
\frac{2^{n-1}}{3} & \text{if } n \text{ is even} \\
\frac{2^{n+1} - 1}{3} & \text{if } n \text{ is odd}
\end{cases}
\]

pebbles to cover the maximum independent set $\{v_1, v_3, v_5, \ldots, v_{n-3}, v_{n-1}\}$ if n is even

$\{v_1, v_2, v_3, \ldots, v_{n-2}, v_n\}$ if n is odd

of P_n from the vertex v_1.

Thus $\rho(P_n) \geq \begin{cases}
\frac{2^{n-1}}{3} & \text{if } n \text{ is even} \\
\frac{2^{n+1} - 1}{3} & \text{if } n \text{ is odd}
\end{cases}$.

Next we prove the upper bound by induction on n. The result is true for $n = 5$ and $n = 6$ from Theorem 2.4 and Theorem 2.5 respectively. Also note that

$\rho(P_m) = \rho(P_{m-1})$ when m is even and for $n \geq 7$, $\rho(P_n) = \rho(P_{n-2}) + \begin{cases}
2^{n-2} & \text{if } n \text{ is even} \\
2^{n-1} & \text{if } n \text{ is odd}
\end{cases}$.

Now consider the distribution of $\rho(P_n)$ pebbles on the vertices of P_n.

Case 1. n is odd.

Let $f(v_n) = 0$. If $f(v_{n-1}) = 0$, then we can pebble the vertex v_n by using at most 2^{n-1} pebbles. Then the path $P_{n-2} : v_1v_2v_3 \ldots v_{n-3}v_{n-2}$ contains at least $\rho(P_{n-2})$ pebbles and hence we are done. So, assume that $f(v_{n-1}) \geq 1$. If $f(v_{n-1}) = 1$ or 3 then also we are done. If $f(v_{n-1})$ is even then we move a
single pebble to \(v_n \) and then we move \(f(v_{n-1}) - 2 \) pebbles to \(v_{n-2} \). Hence, we are done since \(f(P_{n-2}) + \frac{f(v_{n-1}) - 2}{2} \geq \rho(P_{n-2}) \). If \(f(v_{n-1}) \geq 5 \) then consider the following sequence of pebbling moves: \(v_{n-1} \overset{2}{\rightarrow} v_n \rightarrow v_{n-1} \rightarrow v_n \) and then we move \(f(v_{n-1}) - 5 \) pebbles to \(v_{n-2} \). Here also, we are done since \(f(P_{n-2}) + \frac{f(v_{n-1}) - 5}{2} \geq \rho(P_{n-2}) \). So, we assume that \(f(v_n) \geq 1 \). In a similar way, we may assume that \(f(v_1) \geq 1 \). Consider the paths \(P_A : v_1v_2...v_{n-2} \) and \(P_B : v_3v_4...v_{n} \). Then, any one of the path contains at least \(\rho(P_{n-2}) \) pebbles. Without loss of generality, let \(P_A \) be the path. If \(f(v_{n-1}) = 0 \) then we are done easily. Similarly, we are done if \(f(v_{n-1}) + f(v_{n}) \geq 2 \) except the case \(f(v_n) = 1 \) and \(f(v_{n-1}) = 1 \). Now, we consider the case \(f(v_n) = 1 \) and \(f(v_{n-1}) = 1 \). For this case, \(P_A \) contains \(\rho(P_n) - 2 \) pebbles on it. Using at most \(2^{n-2} \) pebbles, we can move a pebble to \(v_{n-1} \) from the vertices of \(P_A \) and then we move a pebble to \(v_{n-2} \) from \(v_{n-1} \). Thus, we are done since \(\rho(P_n) - 2^{n-2} \geq \rho(P_{n-2}) \).

Case 2. \(n \) is even.

Clearly, we are done if \(f(v_n) = 0 \) or \(f(v_1) = 0 \), since \(\rho(P_n) = \rho(P_{n-1}) \) when \(n \) is even. So, we assume that \(f(v_n) \geq 1 \) and \(f(v_1) \geq 1 \). Consider the paths \(P_A : v_1v_2...v_{n-2} \) and \(P_B : v_3v_4...v_{n} \). Then any one of the path contains at least \(\rho(P_{n-2}) \) pebbles. Without loss of generality, let \(P_A \) be the path. If \(f(v_{n-1}) = 0 \) then we are done easily. Similarly, we are done if \(f(v_{n-1}) + f(v_{n}) \geq 2 \) except the case \(f(v_n) = 1 \) and \(f(v_{n-1}) = 1 \). Finally, we consider the case \(f(v_n) = 1 \) and \(f(v_{n-1}) = 1 \). For this case, \(P_A \) contains \(\rho(P_n) - 2 \) pebbles on it. Using at most \(2^{n-2} \) pebbles from the vertices of \(P_A \), we can move a pebble to \(v_{n-1} \). If we use exactly \(2^{n-2} \) pebbles to pebble \(v_{n-1} \) from \(P_A \), then we move one pebble to \(v_{n-2} \) from \(v_{n-1} \) and hence we are done since the path \(v_1v_2...v_{n-4} \) contains more than \(\rho(P_{n-4}) \) pebbles. If we use less than \(2^{n-2} \) pebbles to pebble \(v_{n-1} \) from \(P_A \), then we move one pebble to \(v_n \) from \(v_{n-1} \) and hence we are done since \(P_{n-2} \) contains at least \(\rho(P_{n-2}) \) pebbles.

Thus \(\rho(P_n) \leq \begin{cases} \frac{2^n - 1}{3} & \text{if } n \text{ is even} \\ \frac{2^{n+1} - 1}{3} & \text{if } n \text{ is odd} \end{cases} \).
REFERENCES

[6] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, Maximum independent set cover pebbling number of an m-ary tree, Accepted for publication (*Sciencia Acta Xaveriana*).