ABSTRACT- Every processor processes on the basis of arithmetic operations. Out of the basic arithmetic operations, it is multiplication which is complex. In other words, time consuming. So to speed up the processor we need a fast multiplier. The speed of the multiplier depends upon the generated partial products. The number of adders that are used in the process of multiplication makes it complex as well. The main focus of this work is partial product reduction using radix 4 Booth algorithm and also reduce the number of adders by using Dadda multiplier. Since two methods are clubbed together for different operations, this multiplier is called Advanced Booth Dadda multiplier.

Keywords: Adders, Booth multiplier, Dadda multiplier, Partial Products, Radix 4 multiplication.

1. Introduction

[1] Arithmetic circuits for example adders and multipliers are time consuming depending upon the bits and hardware complexity. [2] In signal processing, major operation of various filters like FIR, IIR filter is convolution, which can be implemented by using delay element and arithmetic operators. So multiplier must be fast. One such algorithm is Booth algorithm. [3] In 1950, A.D. Booth invented the Booth Algorithm during the study on crystallography. [4] By using this method, multiplication gets faster as the count of partial products (P.P.) gets reduced.

[5] Mac-Sorley proposed modified Booth algorithm, where three bits instead of two bits are scanned. So the number of partial products generated are less than that in Booth algorithm. [6] Luigi Dadda designed a hardware multiplier in 1965 which is known as Dadda multiplier. [7] Here the number of full adders used is (N2-4N+3) and half adders used is (N-1) where N is the number of bits of the multiplier. So by combining Advanced booth algorithm and Dadda multiplier, number of partial products as well as number of adders can be reduced.

2. Booth Multiplier

[8] Iteration steps are reduced by using Booth multiplier when compared with other conventional methods.

2.1. Radix 2 Multiplication

In this method, the multiplier is appended by ‘0’ in the LSB and then it is grouped in overlapping groups of two. Then based on the operations mentioned in the recording table drawn below, multiplicand is altered to finally get the product. Here, we get n partial products for n bit multiplier. Now that the count of P.P. is equal to the number of multiplier bits, hence process is slow.

<table>
<thead>
<tr>
<th>M (i+1)</th>
<th>M (i)</th>
<th>[3] OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>No arithmetic operation is performed only shifting is done.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Add multiplicand to left half part of product and then shifting is done.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Subtract multiplicand from left half part of product and then shifting is done</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>No arithmetic operation is performed only shifting is done.</td>
</tr>
</tbody>
</table>

2.2. Radix-4 Multiplication

[9] It is possible to reduce the number of partial products by half, by using the technique of radix-4 Booth recoding. In this method, the multiplier is appended by ‘0’ in the LSB and then it is grouped in overlapping groups of three. Then based on the operations mentioned in the recording table drawn below, multiplicand is altered to finally get the product. Here we get (n/2) partial products for n bit multiplier where n is even. When n is odd, we get ((n/2)+1) partial products.

So as we increase the number of overlapping bits in the multiplier (radix), partial products can be decreased. In this paper, partial products are formed using radix 4 multiplication process. When compared [10] Radix-4 Booth Multiplier gives higher speed when compared with Radix-2 Booth Multiplier. [11] The main disadvantage of the modified booth multiplier is its complexity to produce partial product.

TABLE 2. Recording table of radix 4 multiplication

<table>
<thead>
<tr>
<th>M (i+1)</th>
<th>M (i)</th>
<th>M (i-1)</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 X Multiplicand</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1 X Multiplicand</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2 X Multiplicand</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-2 X Multiplicand</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1 X Multiplicand</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1 X Multiplicand</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

3. Dadda Multiplier

It is a column compression multiplier. [13] Column compression multiplier continued to be studied due to their high speed performance.

In this method, partial products are arranged in a definite pattern shown below by shifting all the columns upwards. Then using (2,2) and (3,2) counters the height of the pattern is reduced to two. Then using carry select adder these two rows are added to get the final result.
product. [14] In order to realize the minimum number of reduction stages, the height of each intermediate matrix is limited to the least integer that is no more than 1.5 times the height of its successor.

Fig. 1. [15] Pattern of Dadda Multiplier

4. Proposed Multiplier

In this paper, Booth Dadda multiplier is described where Radix 4 Booth Multiplier is used for partial product formation and Dadda Multiplier is used to add those partial products. When we simply use these two techniques, result may come incorrect. So we use sign template along with partial products formed after using Radix 4 multiplication and then arrange them into Dadda pattern.

4.1 Sign Template

In this, the first partial product that is formed is appended with S, S and S in the MSB where S is the sign bit and S is the complement of sign bit. Rest in all partial products except in last and last but one partial product, 1 and S is appended at MSB. In last but one partial product, S is appended in the MSB and in the last partial product, nothing is appended, instead MSB is ignored.

4.2 Example

Consider two numbers where multiplicand is 15_{10} i.e. $(00001111)_2$ and multiplier is 30_{10} i.e. $(00011110)_2$.

Stage 1: Radix 4 multiplication:

Firstly multiplier is subdivided into overlapping groups of three after appending a zero (shown in bold) at LSB which is shown below:

```
0 0 0 1 1 1 1 0 0
```
Then we find all possible partial products that can be formed by multiplicand.

1 * multiplicand = 0 0 0 0 1 1 1 1 (multiplicand as it is)
-1 * multiplicand = 1 1 1 1 0 0 0 1 (2’s complement of (1*multiplicand))

2 * multiplicand = 0 0 0 1 1 1 0 (ignore MSB and append a zero to the LSB of (1* multiplicand))
-2 * multiplicand = 1 1 1 0 0 0 1 0 (2’s complement of (2*multiplicand))

0 = 0 0 0 0 0 0 0 0

Then based on the sign template we determine the operations to be performed. We start forming partial products from the LSB. So we get four partial products.

First partial product will be 1 1 1 0 0 0 1 0 as pair (100) has the operation (-2*multiplicand).
Second partial product will be 0 0 0 0 0 0 0 0 as pair (111) has the operation ‘0’.
Third partial product will be 0 0 0 1 1 1 0 as pair (011) has the operation (2*multiplicand).
Fourth partial product will be 0 0 0 0 0 0 0 0 as pair (000) has the operation ‘0’.

Stage 2: Sign template:

In this stage, sign bits are appended towards the MSB of each partial product. For pairs (000), (001), (010) and (011) S is ‘0’ and S is ‘1’ and for pairs (100), (101), (110) and (111) S is ‘1’ and S is ‘0’.

In this example, the first partial product becomes 0 1 1 1 1 0 0 0 1 0. Appended sign bits are shown in bold. The second partial product becomes 1 1 0 0 0 0 0 0 0. The third partial product becomes 1 0 0 0 1 1 1 1 0. The fourth partial product becomes 0 0 0 0 0 0 0 0 0. After every partial product, two bits are left vacant from LSB.

The proper structure of the partial product format is shown below:

```
0 1 1 1 1 1 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0
```

Stage 3: Dadda Multiplier
Now all the bits are shifted upwards column wise like the way shown below:

```
0 1 1 1 1 1 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0
```

So the structure becomes like the way shown below:

```
1 1 0 1 1 1 1 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 0 0 0
```

Now reducing the number of rows to 3 by using (2,2) or (3,2) adders as shown below:

```
1 1 0 1 1 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 0 0 0
```

Sum of the encircled bits are placed first in that column followed by left over bits and carry of the previous encircled columns. The result is shown below:

```
1 1 1 1 0 0 1 1 0 0 0 1 0
0 0 1 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 1 0
0 0 0 0 0
```

Again counters are used to reduce the column height to two. The result is shown below:

```
1 1 1 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 1 0 0 0 0
```

Now add the two rows using carry select adder to get the final product as shown below:

\((0 0 0 0 1 1 1 0 0 0 0 1 0)_2\) which is equivalent to \((450)_{10}\).

5. Comparison

Proposed multiplier is compared with Radix-4 Booth multiplier and Radix-2 Booth multiplier and the result is shown below:
6. Result

Result after multiplying two eight bit numbers in VHDL is shown below:

![Fig. 2. Implementation of Advanced Booth Dadda in VHDL](image)

7. Conclusion

It can be concluded that the Advance Booth Dadda multiplier uses less number of slice LUTs. Also it is a faster multiplier when compared to radix 4 Booth multiplier and radix 2 Booth multiplier. [16] It is known that, systems based on microprocessor have fast-growing demand of embedded microprocessors with high speed and low power features. Since, multiplier is an important unit of microprocessor, if this is made to work faster, entire embedded system will work in high speed. [9] A multiplier is an essential element of the digital signal processing such as filtering, convolution, and inner products. [17] Low-power multiplier design holds a significant part in low-power VLSI system design. So, some out of the many applications prove the importance of proposed multiplier. By using higher radix multiplication method (in the future), number of partial products gets further reduced thereby making the multiplier much faster than the proposed multiplier.
REFERENCES:

www.ijergs.org