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In this paper, we compute the linear transformation associated 

tothe action of the special linear groups on the space of all 

alternating matrices. 
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1. INTRODUCTION 

 

A famous theorem of Vaserstein in [(Vaserstein, 1987) 

Theorem 5.2 and Corollary 7.4] states that the orbit 

space  of uni modular rows under elementary 

action is in bijective correspondence to the elementary 

symplectic Witt group , when R is a commutative ring of 

Krull dimension two.(Recall that  is the group of stably 

equivalent alternating matrices of P fafian one over R.) 

To prove this theorem Vaserstein (1987) evolves the study of 

the elementary group on an invertible alternating matrix. 

 

2. PRELIMINARIES  

 

Let R be a commutative ring with 1. A matrix  is said 

to be skew-symmetric if , for . The space 

of all alternating  matrices over a commutative ring R will 

be denoted by . It is clearly a free R-module of rank  

 with basis 

, where  with ij-th 

entry is 1 and all other entries are 0. 
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Definition 2.1The General Linear group  is defined as the group of   invertible matrices with 

entries in R. 

 

Definition 2.2 The Special Linear group is denoted by  and is defined as 

. 

 

Definition 2.3 The group of elementary matrices  is a subgroup of  generated by matrices of 

the form , where ,  and  with ij-th entry is1 and all other entries 

are 0. 

 

Following are some well-known properties of the elementary generators: 

Lemma 2.4For , 

1. (Splitting Property) , . 

2. (Commutator Law) [ )] , . 

 

Remark 2.5 In view of the Commutator Law,  is generated by 

. 

 

As R is commutative,  , , , is invertible with  inverse . In fact,  belongs to 

.  Hence, . 

 

 

3. COMPOUND MATRICES 
 
In this section we see the definition and properties of Compound matrices. We begin with some basic 

definitions: 

 

Definition 3.1 (Minors of a matrix) Given an  matrix , a minor of A is the determinant of 

a smaller matrix formed from its entries by selecting only some of the rows and columns. 

 Let  and   be subsets of  and  , respectively. The 

indices are chosen such that  and . The  p-th order minor defined by  K 

and L is the determinant of the submatrix of A obtained by considering the rows  and columns 

 of A. We denote this submatrix as A  

 

We now state a well-known theorem: 

 

Theorem 3.2 (The Cauchy-Binet formula) Let A be a  matrix and B a  matrix. Then the 

determinant of their product  can be written as a sum of products of minors of A and B, i.e. 

 

 
 

The sum is over the maximal (m-th order) minors of A and the corresponding minor of B. In particular, 

det(AB) = det(A)det(B), if A, B are  matrices. 

 

First recall the notion of the compound matrix: 
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Definition 3.3Suppose that A is an  matrix with entries from a ring R and . The 

 compound matrix  or  adjugate of A is the   matrix whose entries are the minors of 

order r, arranged in lexicographic order, i.e. 

 

 
 
Following are some properties of Compound matrices. 

 

Lemma 3.4 (Properties) [1] Let A and B be  matrices and . Then  

1.  

2.  

3.  

4.  

 

 

4. ASSOCIATED LINEAR TRANSFORMATIONS  

 

In this section, we find the linear transformation of the action of  on the space  of 

alternating matrices. 

 

One can define the action of  on  as  

 

 

 
This action enables one to associate a linear transformation  for via 

. 

 

Let us compute  We prove that it is the matrix of . 

 

Lemma 4.1 Let  be a R-linear map. Then the matrix of the linear transformation 

 where  is the matrix of    . 

 

Proof: This is well-known to experts when R is a field. We compute it as follows: 

 

Let  be a basis of . and  be a basis of . Let us compute the matrix of  w.r.t. the 

standard basis  ordered lexico graphically, and  ordered lexico graphically. 

Suppose  as usual. Then 

 

 
 

 
 

Where A denotes the matrix of the linear transformation . 
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Theorem 4.2 The matrix of the linear transformation  is the same as the matrix of the linear 

transformation   ∧2 σ: ∧2  Rn  →  ∧2  Rn; which is the compound matrix of order 2 associated to . 

 

Proof: Follows from Lemma 4.1. 

 

The following Theorem gives the explicit formula for , where . 

 

Theorem 4.3 Let or , the basic generators of . Then the matrix 

of  with respect to the ordered basis  of  is 

 

1. If , then  

2. If , then  

3. For  

 
4. If , then  

and  

 

Proof: When , by Theorem 4.2,  

Note that for , for ,  and all other entries are zero. 

Thus we have, 

 

 
 

When , note that for ,  for , 

 and all other entries are zero. Thus we have, 

 

When , note that for for 

,  and all other entries are zero. Thus we 

have, 

 
 

The case when  can be proved similarly. follows from Lemma 3.4 (iv). 
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