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ABSTRACT

In this paper, we compute the linear transformation associated
tothe action of the special linear groups on the space of all
alternating matrices.

Keywords: Group action, elementary group, alternating
matrices, Mathematics Subject Classification 2010: 11E57, 13C10

1. INTRODUCTION

A famous theorem of Vaserstein in [(Vaserstein, 1987)
Theorem 5.2 and Corollary 7.4] states that the orbit
space Umz(R)/E;{E) of uni modular rows under elementary
action is in bijective correspondence to the elementary
symplectic Witt group Wz{R), when R is a commutative ring of
Krull dimension two.(Recall that W:z{R)is the group of stably
equivalent alternating matrices of P fafian one over R.)

To prove this theorem Vaserstein (1987) evolves the study of
the elementary group on an invertible alternating matrix.

2. PRELIMINARIES

— 1

Let R be a commutative ring with 1. A matrix 4 € M, (R)is said
to be skew-symmetricif a;; = —ay, for 1 = {,j = n.The space
of all alternating n = # matrices over a commutative ring R will
be denoted by Alt, (R).Itis clearly a free R-module of rank
1+ 2+ + (n—1) = (5 with basis

By = &; — g 1 =1 < j= n,wheree; € M,(R)with ij-th

entry is 1 and all other entries are 0.
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Definition 2.1The General Linear group G L. (R is defined as the group of v % v invertible matrices with
entries in R.

Definition 2.2 The Special Linear group is denoted by 5L,.(R) and is defined as
SL(R) = {ae GL.(R): det{a) = 1

Definition 2.3 The group of elementary matricesE,.(R) is a subgroup of:L,.(R) generated by matrices of

the formE;;(4) = I, + A e;;, whered € R,i = jande;; € M,(R)with ij-th entry is1 and all other entries

are 0.

Following are some well-known properties of the elementary generators:
Lemma 2.4Ford,u € R,

1. (Splitting Property) E; (4 +u) = E;{(A)E;(w),1=i=j=r

2. (Commutator Law) [E;(4), Eqp{t)] = E{Au), 1= i=j= k= r

Remark 2.5 In view of the Commutator Law, E,.( R} is generated by
[Ey{A)Eq(w): 2=i=rAduec RL

As Ris commutative, E;{4),i = j, A € R,isinvertible with inverse E;;{—4). In fact, E;;{1) belongs to
SL,.(R). Hence, E.(R) € SL,.(R) S GL,.(R).

3. COMPOUND MATRICES

In this section we see the definition and properties of Compound matrices. We begin with some basic
definitions:

Definition 3.1 (Minors of a matrix) Given ann x m matrix A = (a;), a minor of A is the determinant of

a smaller matrix formed from its entries by selecting only some of the rows and columns.
Let K = {ky,ks, ..., kyland L =\{l1,1,...,1,} be subsets of {1,2, ...,n} and {1,2,...,m}, respectively. The

-
-~
e,

indices are chosen such that k1 == Ko =< -+

—-

< kyand!y <17 < - <, The p-th order minor defined by K

and L is the determinant of the submatrix of A obtained by considering the rows k1,%z, ..., k5 and columns

. ; , . ky ky Ky

L4,02,... 15 of A. We denote this submatrixas A} ;- .
' Vi b

We now state a well-known theorem:

Theorem 3.2 (The Cauchy-Binet formula) Let A be a m x nmatrix and B a n x m matrix. Then the
determinant of their product C = AE can be written as a sum of products of minors of A and B, i.e.

(1 2 ...m) kg Ko ol
€l = Z ﬁ[-x.’ﬁ, kg ok B(l 2 ---tr.ufll

12k, ke ShmaEn

The sum is over the maximal (m-th order) minors of A and the corresponding minor of B. In particular,
det(AB) = det(A)det(B), if 4, B are n % mn matrices.

First recall the notion of the compound matrix:
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-

Definition 3.3Suppose that A is an m x n matrix with entries from a ring Rand 1 = r = min {m,n). The
o PR o g . my Y . . .
"% compound matrix C,.(A) or v** adjugate of A is the (v | [W'I matrix whose entries are the minors of

order r, arranged in lexicographic order, i.e.

cw=((2 )
Vi oJz iy

Following are some properties of Compound matrices.

Lemma 3.4 (Properties) [1] Let A and B be n % n matrices and v = n. Then
ci4) = A

C™{A) = det(4)

CT(AB) = C€T(A)CT(B)

cr(an) = (cra))

B e

4. ASSOCIATED LINEAR TRANSFORMATIONS

In this section, we find the linear transformation of the action of SL,{R)on the spacedlt,(R) of
alternating matrices.

One can define the action of 5L, {E} on Alt, (R as

SL,(R) x Alt,(R) — Alt,(R)

(6,A) = cAgt

This action enables one to associate a linear transformation T, : Alt,{R) — Alt, (R)forc £ SL,(R)via
T.(A) =cAc®

Let us compute T., ¢ € SL,(R). We prove that it is the matrix of /° @.

Lemma 4.1 Let o: E™ = R™ be a R-linear map. Then the matrix of the linear transformation
A g ATRT = AT R™is C.(M(a)), where M{z) is the matrix of & .

Proof: This is well-known to experts when R is a field. We compute it as follows:

Let ey, ..., &, be a basis of B™. and fj, ..., f;;be a basis of R™. Let us compute the matrix of A" 7 w.r.t. the
standard basis e;, /... e;_ordered lexico graphically, and f;, A ...~ f;, ordered lexico graphically.

Suppose 1 = i = -+ =i, = nasusual. Then
i . '-.
AT o e, A A E:‘.J = GLef,) Ao hole; )
Gfinen Y dufi= Y At P g g,
= =1 12f ot femn o | b

Where A denotes the matrix of the linear transformation .
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Theorem 4.2 The matrix of the linear transformationT is the same as the matrix of the linear
transformation A2 o: A2 Rr - AZ Rn; which is the compound matrix of order 2 associated to a.

Proof: Follows from Lemma 4.1.

The following Theorem gives the explicit formula for [T,.], where ¢ = Ey; (1), E:1 (4.

Theorem 4.3 Letc = Ey;{AJorE;1{A),2 = i = n,A € R, the basic generators of E,,(R). Then the matrix

of T with respect to the ordered basis { By, Byz, ..., Biyis B2z, B2z, oo, Bogy Basy oo, By_qnt Of Al (R is

1. Ifi =2, then [Tz, (1] = Inin=2) + 2 Tj5 €

2. Ifi =3, then [Tz, (1)] = Ininon + 2 IR
3. Forl=1i=mn-1,
n—1 i n
[T.':'a_g :.;':'] = Iam-o+ 4 z €immitj e Tt i) T A8y iy — A Z e 1"__._1:‘_-.'--:':'__I,?’!_l.“:.l

and [Tz, ()] = [TE, A0

Proof: When ¢ = E;-{1), by Theorem 4.2, [T.] = [ g [1 jjl)
N I .

. 1 L .
Note thatfor3 = v = n, 7 (_j W'I =Adforl=s5 =< r=mna [5 W'I = 1 and all other entries are zero.

Thus we have,

0 0 \
"r“— G“_ (M—2)(n-5)
[TE . :/-':I = ( n-l { /-l.lr_,,!_: n—1x - )

= Inpn-g) + Aegy, + €321 + -+ Ep_q12n-3)

n—1
= Inm-2+ A Z Eim—12+j

A \
When e = Ej3(d), notethata(i Ejl =—Aford4 = r = ﬂ,G(é :J =A forl=s = r=n,
iJ G :J = 1 and all other entries are zero. Thus we have,
o n—1

[Tz, (D] = Intn-gy + 2 Z € an—5+; — A€1n

Whens = Ej;{d), 4 =i=n—1,notethatfor2 =r =i—1, 7 (i TJ = —4, for
. 1 5 . ‘ .
i=1=r=mna (1_ W'I =4 forl= s < r=mn¢o [5 W'I = 1 and all other entries are zero. Thus we
have
“_1 »—
[TE-__ :/-l.:l] = .Irr'__.:"l_;;'_: + /-l. Z E_."-."!—f—J"—Eél_:Lzl:?!—-:{_.' - /-l.e-l._,,!_:'_s - AZ o e_,".ﬂ—f—g—z';:;;:zl:?’!—k.'
The case when ¢ = Ej, () can be proved similarly.[Tz. (A)] = [Tz, (4)]"follows from Lemma 3.4 (iv).

146 www.irjse.in



Linear transformation of the action of SL,, (R) on the space of alternating matrices

REFERENCES

Horn Roger A and Johnson Charles R. Matrix
Analysis, Cambridge University Press.

van der Kallen W. A group structure on certain
orbit sets of unimodular rows, J. Algebra, 1983;
82(2): 363 - 397.

van der Kallen W. A module structure on
certain orbit sets of unimodular rows, J. Pure
Appl. Algebra, 1987; 57:281-316..

Lam TY. Serre's problem on Projective Modules,
Springer = Monographs in  Mathematics.
Springer-Verlag, Berlin, 2006.

Suslin AA. On the structure of the Special Linear
Group over Polynomial rings. Math. USSR
Izvestija, 1977; 11:221 - 238.

Vaserstein LN. Computation of Ky via Mennicke
symbols, Communications in Algebra, 1987;
15(3):611 - 656.

© 2015| Published by IR]JSE

Int. Res. J. of Science & Engineering, 2015; Volume 3, No. 4, July-August, 2015.

147



