ISSN: 2322-0015

Linear transformation of the action of $SL_n(R)$ on the space of alternating matrices

Jose Selby^{1*} and Singh Bhatoa Joginder²

¹Department of Mathematics, Institute of Science, Madam Cama Road, Fort, Mumbai 400-032.

²Department of Mathematics, Government College, Daman.

*Corresponding author Email: selbyjose@gmail.com

Manuscript Details	ABSTRACT
Received: 10.07.2015 Accepted: 15.08.2015 Online Published: 30.08.2015	In this paper, we compute the linear transformation associated tothe action of the special linear groups on the space of all alternating matrices.
ISSN: 2322-0015	Keywords: Group action, elementary group, alternating matrices, Mathematics Subject Classification 2010: 11E57, 13C10

Editor: Dr. Chavhan Arvind

Cite this article as:

Jose Selby and Singh Bhatoa Joginder. Linear transformation of the action of $SL_n(R)$ on the space of alternating matrices. Int. Res. J. of Science & Engineering, 2015; Vol. 3 (4):143-146.

Copyright: © Author(s), This is an open access article under the terms of the Creative Commons Attribution Non-Commercial No Derivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

INTRODUCTION

A famous theorem of Vaserstein in [(Vaserstein, 1987) Theorem 5.2 and Corollary 7.4] states that the orbit space $Um_3(R)/E_3(R)$ of uni modular rows under elementary action is in bijective correspondence to the elementary symplectic Witt group $W_E(R)$, when R is a commutative ring of Krull dimension two. (Recall that $W_E(R)$ is the group of stably equivalent alternating matrices of P fafian one over R.)

To prove this theorem Vaserstein (1987) evolves the study of the elementary group on an invertible alternating matrix.

PRELIMINARIES

Let *R* be a commutative ring with 1. A matrix $A \in M_n(R)$ is said to be skew-symmetric if $a_{ij} = -a_{ji}$ for $1 \le i, j \le n$. The space of all alternating $n \times n$ matrices over a commutative ring R will be denoted by $Alt_n(R)$. It is clearly a free R-module of rank $1 + 2 + \dots + (n-1) = \binom{n}{2}$ with basis $B_{ij} = e_{ij} - e_{ji}$, $1 \le i < j \le n$, where $e_{ij} \in M_n(R)$ with ij-th entry is 1 and all other entries are 0.

Definition 2.1The General Linear group $GL_r(R)$ is defined as the group of $r \times r$ invertible matrices with entries in R.

Definition 2.2 The **Special Linear** group is denoted by $SL_r(R)$ and is defined as $SL_r(R) = \{ \alpha \in GL_r(R) : det(\alpha) = 1 \}.$

Definition 2.3 The group of **elementary matrices** $E_r(R)$ is a subgroup of $GL_r(R)$ generated by matrices of the form $E_{ij}(\lambda) = I_r + \lambda e_{ij}$ where $\lambda \in R$, $i \neq j$ and $e_{ij} \in M_r(R)$ with ij-th entry is 1 and all other entries are 0.

Following are some well-known properties of the elementary generators:

Lemma 2.4For λ , $\mu \in R$,

- 1. (Splitting Property) $E_{ij}(\lambda + \mu) = E_{ij}(\lambda)E_{ij}(\mu), 1 \le i \ne j \le r$.
- 2. (Commutator Law) $[E_{ij}(\lambda), E_{jk}(\mu)] = E_{ik}(\lambda \mu), 1 \le i \ne j \ne k \le r$.

Remark 2.5 In view of the Commutator Law, $E_r(R)$ is generated by $\{E_{1i}(\lambda), E_{i1}(\mu): 2 \le i \le r, \lambda, \mu \in R\}.$

As R is commutative, $E_{ij}(\lambda)$, $i \neq j$, $\lambda \in R$, is invertible with inverse $E_{ij}(-\lambda)$. In fact, $E_{ij}(\lambda)$ belongs to $SL_r(R)$. Hence, $E_r(R) \subseteq SL_r(R) \subseteq GL_r(R)$.

3. COMPOUND MATRICES

In this section we see the definition and properties of Compound matrices. We begin with some basic definitions:

Definition 3.1 (Minors of a matrix) Given an $n \times m$ matrix $A = (a_{ij})$, a minor of A is the determinant of a smaller matrix formed from its entries by selecting only some of the rows and columns. Let $K = \{k_1, k_2, ..., k_p\}$ and $L = \setminus \{l_1, l_2, ..., l_p\}$ be subsets of $\{1, 2, ..., n\}$ and $\{1, 2, ..., m\}$, respectively. The indices are chosen such that $k_1 < k_2 < \cdots < k_p$ and $l_1 < l_2 < \cdots < l_p$. The p-th order minor defined by K and L is the determinant of the submatrix of A obtained by considering the rows $k_1, k_2, ..., k_p$ and columns $l_1, l_2, ..., l_p$ of A. We denote this submatrix as $A \begin{pmatrix} k_1 & k_2 \cdots & k_p \\ l_1 & l_2 \cdots & l_p \end{pmatrix}$.

We now state a well-known theorem:

Theorem 3.2 (The Cauchy-Binet formula) Let A be a $m \times n$ matrix and B a $n \times m$ matrix. Then the determinant of their product C = AB can be written as a sum of products of minors of A and B, i.e.

$$|\mathcal{C}| = \sum_{\substack{1 \leq k_1 \leq k_2 \leq \cdots \leq k_m \leq n}} A \begin{pmatrix} 1 & 2 & \cdots m \\ k_1 & k_2 & \cdots k_m \end{pmatrix} B \begin{pmatrix} k_1 & k_2 & \cdots k_m \\ 1 & 2 & \cdots m \end{pmatrix}$$

The sum is over the maximal (m-th order) minors of A and the corresponding minor of B. In particular, det(AB) = det(A)det(B), if A, B are $n \times n$ matrices.

First recall the notion of the compound matrix:

Definition 3.3Suppose that A is an $m \times n$ matrix with entries from a ring R and $1 \le r \le min(m,n)$. The r^{th} compound matrix $C_r(A)$ or r^{th} adjugate of A is the $\binom{m}{r} \times \binom{n}{r}$ matrix whose entries are the minors of order r, arranged in lexicographic order, i.e.

$$C_r(A) = \begin{pmatrix} \begin{pmatrix} i_1 & i_2 & \cdots i_r \\ j_1 & j_2 & \cdots j_r \end{pmatrix} \end{pmatrix}$$

Following are some properties of Compound matrices.

Lemma 3.4 (Properties) [1] Let A and B be $n \times n$ matrices and $r \leq n$. Then

- 1. $C^{1}(A) = A$
- 2. $C^n(A) = det(A)$
- 3. $C^r(AB) = C^r(A)C^r(B)$
- 4. $C^r(A^t) = (C^r(A))^t$

4. ASSOCIATED LINEAR TRANSFORMATIONS

In this section, we find the linear transformation of the action of $SL_n(R)$ on the space $Alt_n(R)$ of alternating matrices.

One can define the action of $SL_n(R)$ on $Alt_n(R)$ as

$$SL_n(R) \times Alt_n(R) \rightarrow Alt_n(R)$$

 $(\sigma, A) \mapsto \sigma A \sigma^t$

This action enables one to associate a linear transformation $T_{\sigma} \colon Alt_n(R) \to Alt_n(R)$ for $\sigma \in SL_n(R)$, via $T_{\sigma}(A) = \sigma A \sigma^t$.

Let us compute T_{σ} , $\sigma \in SL_n(R)$. We prove that it is the matrix of $\wedge^2 \sigma$.

Lemma 4.1 Let $\sigma: \mathbb{R}^n \to \mathbb{R}^m$ be a R-linear map. Then the matrix of the linear transformation Λ^r $\sigma: \Lambda^r \mathbb{R}^n \to \Lambda^r \mathbb{R}^m$ is $C_r(M(\sigma))$, where $M(\sigma)$ is the matrix of σ .

Proof: This is well-known to experts when R is a field. We compute it as follows:

Let $e_1, ..., e_n$ be a basis of R^n . and $f_1, ..., f_m$ be a basis of R^m . Let us compute the matrix of $\Lambda^r \sigma$ w.r.t. the standard basis $e_{i_1} \wedge ... \wedge e_{i_r}$ ordered lexico graphically, and $f_{i_1} \wedge ... \wedge f_{i_r}$ ordered lexico graphically. Suppose $1 \le i_1 < \cdots < i_r \le n$ as usual. Then

$$\wedge^r (\sigma) (e_{i_1} \wedge ... \wedge e_{i_r}) = \sigma(e_{i_1}) \wedge ... \wedge \sigma(e_{i_r})$$

$$\sum_{j=1}^m d_{ji_2}f_j\wedge\ldots\wedge\sum_{j=1}^m d_{ji_r}f_j=\sum_{1\leq j_2<\cdots< j_r\leq n}A\begin{pmatrix} j_1 & j_2 & \cdots j_r\\ i_1 & i_2 & \cdots i_r\end{pmatrix}f_{j_1}\wedge\ldots\wedge f_{j_r}$$

Where A denotes the matrix of the linear transformation σ .

Theorem 4.2 The matrix of the linear transformation T_{σ} is the same as the matrix of the linear transformation $\Lambda^2 \sigma: \Lambda^2 \mathbb{R}^n \to \Lambda^2 \mathbb{R}^n$; which is the compound matrix of order 2 associated to σ .

Proof: Follows from Lemma 4.1.

The following Theorem gives the explicit formula for $[T_{\sigma}]$, where $\sigma = E_{1i}(\lambda)$, $E_{i1}(\lambda)$.

Theorem 4.3 Let $\sigma = E_{1i}(\lambda)$ or $E_{i1}(\lambda)$, $2 \le i \le n, \lambda \in R$, the basic generators of $E_n(R)$. Then the matrix of T_{σ} with respect to the ordered basis $\{B_{12}, B_{13}, ..., B_{1n}, B_{23}, B_{24}, ..., B_{2n}, B_{34}, ..., B_{n-1,n}\}$ of $Alt_n(R)$ is

1. If
$$i = 2$$
, then $\left[T_{E_{12}}(\lambda)\right] = I_{\frac{n(n-1)}{2}} + \lambda \sum_{j=i}^{n-1} e_{j,n-2+j}$

2. If
$$i=3$$
, then $\left[T_{E_{15}}(\lambda)\right] = I_{\frac{n(n-1)}{2}} + \lambda \sum_{j=i}^{n-1} e_{j,2n-5+j} - \lambda e_{1,n}$

3. For $1 \le i \le n-1$,

$$\left[T_{E_{1i}}(\lambda)\right] = I_{\frac{n(n-1)}{2}} + \lambda \sum_{j=i}^{n-1} e_{j,n-i+j+\sum_{k=2}^{i-1}(n-k)} - \lambda e_{1,n+i-3} - \lambda \sum_{j=2}^{i-2} e_{j,n+i-3+\sum_{k=3}^{j+1}(n-k)}$$

4. If i = n, then $\left[T_{E_{12}}(\lambda)\right] = I_{\frac{n(n-1)}{2}} - \lambda e_{1,n+i-3} - \lambda \sum_{j=2}^{i-2} e_{j,n+i-3+\sum_{k=3}^{j+1} (n-k)}$ and $\left[T_{E_{1i}}(\lambda)\right] = \left[T_{E_{1i}}(\lambda)\right]^T$

Proof: When $\sigma = E_{12}(\lambda)$, by Theorem 4.2, $[T_{\sigma}] = \left(\sigma \begin{pmatrix} i & j \\ k & l \end{pmatrix}\right)_{1 \le i < j, k < l \le n}$

Note that for $3 \le r \le n$, $\sigma \begin{pmatrix} 1 & r \\ 2 & r \end{pmatrix} = \lambda$, for $1 \le s < r \le n$, $\sigma \begin{pmatrix} s & r \\ s & r \end{pmatrix} = 1$ and all other entries are zero. Thus we have,

$$[T_{E_{12}}(\lambda)] = \begin{pmatrix} I_{n-1} & 0 & 0 & 0 \\ 0 & \lambda I_{n-2} & 0 & -1 \times \frac{(n-2)(n-s)}{2} \\ 0 & \frac{(n-1)(n-2)}{2} \times (n-1) & I & \frac{(n-1)(n-2)}{2} \end{pmatrix}$$

$$= I_{\frac{n(n-1)}{2}} + \lambda (e_{2,n} + e_{3,n+1} + \dots + e_{n-1,2n-3})$$

$$= I_{\frac{n(n-1)}{2}} + \lambda \sum_{j=2}^{n-1} e_{j,n-2+j}$$

When $\sigma = E_{13}(\lambda)$, note that $\sigma \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = -\lambda$, for $4 \le r \le n$, $\sigma \begin{pmatrix} 1 & r \\ 3 & r \end{pmatrix} = \lambda$, for $1 \le s < r \le n$, $\sigma \begin{pmatrix} s & r \\ s & r \end{pmatrix} = 1$ and all other entries are zero. Thus we have,

$$[T_{E_{13}}(\lambda)] = I_{\frac{n(n-1)}{2}} + \lambda \sum_{j=i}^{n-1} e_{j,2n-5+j} - \lambda e_{1,n}$$

When $\sigma = E_{1i}(\lambda)$, $4 \le i \le n-1$, note that for $2 \le r \le i-1$, $\sigma \begin{pmatrix} 1 & r \\ r & i \end{pmatrix} = -\lambda$, for $i = 1 \le r \le n$, $\sigma \begin{pmatrix} 1 & r \\ i & r \end{pmatrix} = \lambda$, for $1 \le s < r \le n$, $\sigma \begin{pmatrix} s & r \\ s & r \end{pmatrix} = 1$ and all other entries are zero. Thus we have,

$$\left[T_{E_{1i}}(\lambda)\right] = I_{\frac{n(n-1)}{2}} + \lambda \sum_{j=i}^{n-1} e_{j,n-i+j+\sum_{k=2}^{i-1}(n-k)} - \lambda e_{1,n+i-3} - \lambda \sum_{j=2}^{i-2} e_{j,n+i-3+\sum_{k=3}^{j+1}(n-k)}$$

The case when $\sigma = E_{1n}(\lambda)$ can be proved similarly. $[T_{E_{i1}}(\lambda)] = [T_{E_{1i}}(\lambda)]^T$ follows from Lemma 3.4 (iv).

146

REFERENCES

- 1. Horn Roger A and Johnson Charles R. *Matrix Analysis*, Cambridge University Press.
- 2. van der Kallen W. *A group structure on certain orbit sets of unimodular rows, J. Algebra,* 1983; 82(2): 363 397.
- 3. van der Kallen W. *A module structure on certain orbit sets of unimodular rows, J. Pure Appl. Algebra*, 1987; 57:281–316..
- 4. Lam TY. Serre's problem on Projective Modules, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2006.
- 5. Suslin AA. *On the structure of the Special Linear Group over Polynomial rings*. Math. USSR Izvestija, 1977; 11:221 238.
- 6. Vaserstein LN. Computation of K_1 via Mennicke symbols, Communications in Algebra, 1987; 15(3):611 656.

© 2015 | Published by IRJSE