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Abstract

In this paper we prove that the splitting graph of path Pn, cycle Cn, complete

bipartite graph Km,n, matching Mn, wheel Wn and  (k)
n1,

(2)
n1,

(1)
n1, K:...:K:K are cordial.
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1 Introduction

All graphs considered here are finite, simple and undirected. The origin of graph

labelings can be attributed to Rosa [7]. For all terminologies and notations we follow

Harary [5]. Following definitions are useful for the present study.

Definition 1.1. [8] For each vertex v of a graph G, take a new vertex v. Join v to all

the vertices of G adjacent to v. The graph S(G) thus obtained is called splitting graph

of G.

Definition 1.2. [9] The graph G =  (k)
,n

)(
,n

)(
,n :...:K:KK 1

2
1

1
1 is obtained from k copies

of stars (k)
,n

)(
,n

)(
,n ,...,K,KK 1

2
1

1
1 by joining apex vertices of each )(p

,nK 1
1
 and (p)

,nK1 to a

new vertex xp–1, 2  p  k.

Note that G has k(n + 2) − 1 vertices and k(n + 2) − 2 edges.
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Definition 1.3. The assignment of values subject to certain conditions to the vertices

of a graph is known as graph labeling.

Definition 1.4. Let G = (V, E) be a graph. A mapping f : V(G) →{0,1} is called
binary vertex labeling of G and f(v) is called the label of the vertex v of G under f.

For an edge e = uv, the induced edge labeling f∗: E(G) → {0,1} is given by f∗(e)

= |f(u) − f(v)|. Let vf(0), vf(1) be the number of vertices of G having labels 0 and 1

respectively under f and let ef(0), ef(1) be the number of edges having labels 0 and 1

respectively under f∗.

Definition 1.5. A binary vertex labeling of a graph G is called a cordial labeling if

| vf(0) − vf(1) |  1 and | ef(0) − ef(1) |  1. A graph G is cordial if it admits cordial

labeling.

Definition 1.6. A wheel graph Wn is obtained from a cycle Cn by adding a new vertex

and joining it to all the vertices of the cycle by an edge, the new edges are called the

spokes of the wheel.

Definition 1.7. A fan graph Fn is obtained from a path Pn by adding a new vertex and

joining it to all the vertices of the path by an edge, the new edges are called the

spokes of the fan.

Definition 1.8. A matching graph Mn is n copies of K2.

The concept of cordial labeling was introduced by Cahit [3]. S.M. Lee and A.

Liu [6] proved that all complete bipartite graphs and all fans are cordial. Further, they

proved that, the cycle Cn is cordial if and only if n  2 (mod 4), the matching Mn is

cordial if and only if n  2 (mod 4) and the wheel Wn is cordial if and only if n 

3 (mod 4), n  3. S.K. Vaidya et al.[9] proved  (k)
n1,

(2)
n1,

(1)
n1, K:...:K:K is cordial.

In this paper, we prove that the splitting graph of path Pn, cycle Cn, complete

bipartite graph Km,n, matching Mn, wheel Wn and  (k)
n1,

(2)
n1,

(1)
n1, K:...:K:K are

cordial.
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2 Main Results

Theorem 2.1. The graph S(Pn ) is cordial.

Proof. Let G be Pn. The vertices of Pn are v1,v2,…,vn. Then S(G) has the vertices

v1,v2,…,vn,v1,v2,…,vn. The vertex labeling f : V(S(G))  {0,1} is given below.









)4mod(320

)4mod(101

,if  i

,if  i
)f(vi

f(vi)








)4mod(10f0

)4mod(32if1

,  ii

,  i

vf(0) = vf(1) for all n and ef(0) = ef(1) + 1 if n is even and

ef(0) = ef(1)  if n is odd.

Therefore the graph S(G) satisfies the conditions | vf(0) – vf(1) |  1 and

| ef(0) – ef(1) |  1.

Hence S(Pn ) is cordial. 

Illustration 2.2. The cordial labelings of S(P4) and S(P5) are shown in Figure 1(a)

and 1(b).

(a) (b)

Figure 1: Cordial labelings of S(P4) and S(P5)

Theorem 2.3. The graph S(Cn ) is cordial for n  2 (mod 4), n  3.

Proof. Let G be Cn (n  3). The vertices of Cn are v1,v2,…,vn. Then S(G) has the

vertices v1,v2,…,vn, v1,v2,…,vn. The vertex labeling f: V(S(G))  {0,1} is given

below.

f(vi) = 0 and f(vi) = 1 if i  2, 3 (mod 4),

f(vi) = 1 and f(vi) = 0 if i  0, 1 (mod 4).

The following table shows that the graph S(G) satisfies the conditions
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|vf(0)–vf(1)|  1 and | ef(0)–ef(1)|1.

n Vertex Conditions Edge Conditions

n  0 (mod 4)

n is odd

vf(0) = vf(1)

vf(0) = vf(1)

ef(0) = ef(1)

ef(1) = ef(0) + 1

Hence S(Cn ) is cordial. 

Illustration 2.4. The cordial labelings of S(C4) and S(C5) are shown in Figure 2 (a)

and 2(b).

(a) (b)

Figure 2: Cordial labelings of S(C4) and S(C5)

Theorem 2.5. The graph S(Wn ) is cordial for n  2 (mod 4), n  3.

Proof. Let G be Wn (n  3). The vertices are c,v1,v2,…,vn. Then S(G) has the vertices

c,v1,v2,…,vn,c,v1,v2,…,vn. The vertex labeling f : V(S(G))  {0,1} is given below.

f(c) = 0 and f(c) = 1

Case (i) n  0 (mod 4)

f(vi) = f(vi) = 1 if i  1, 2 (mod 4),

f(vi) = f(vi) = 0 if i  0, 3 (mod 4).

Case (ii) n  1 (mod 4)

f(vi) = 0 if  i  2, 3 (mod 4),

f(vi) = 1 if  i  0, 1 (mod 4),

f(vi) = 1 for i = 1 to (n–1)/2,

f(vi) = 0 for i = (n+1)/2 to n.
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Case (iii) n  3 (mod 4)

f(vi) = 0 if i  2, 3 (mod 4),

f(vi) = 1 if i  0, 1 (mod 4),

f(vi) = 0 for i = 1 to (n–1)/2,

f(vi) = 1 for i = (n+1)/2 to n.

The following table shows that the graph S(G) satisfies the conditions

|vf(0)–vf(1)|  1 and | ef(0)–ef(1)|1.

n Vertex Conditions Edge Conditions

n  0 (mod 4)

n  1 (mod 4)

n  3 (mod 4)

vf(0) = vf(1)

vf(0) = vf(1)

vf(0) = vf(1)

ef(0) = ef(1)

ef(1) = ef(0)

ef(0) = ef(1)

Hence S(Wn ) is cordial. 

Illustration 2.6. The cordial labelings of S(W4) and S(W5) are shown in Figure 3 (a)

and 3(b).

(a) (b)

Figure 3: Cordial labelings of S(W4) and S(W5)

Theorem 2.7. The graph S(Mn ) is cordial.

Proof. Let G be Mn. The vertices are v1,v2,…,v2n. Then S(G) has the vertices

v1,v2,…,v2n,v1,v2,…,v2n in the order v2, v1, v2, v1, v4, v3, v4, v3, …, v2n, v2n-1, v2n,

v2n-1. The vertex labeling f : V(S(G))  {0,1} is given below.

f(vi) = 0 if i  0, 1, 2 (mod 4),
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f(vi) = 1 if i  3 (mod 4),

f(vi) = 1 if i  0, 1, 2 (mod 4),

f(vi) = 0 if i  3 (mod 4).

The following table shows that the graph S(G) satisfies the conditions

|vf(0)–vf(1)|  1 and | ef(0)–ef(1)|1.

n Vertex Conditions Edge Conditions

n is odd

n is even

vf(0) = vf(1)

vf(0) = vf(1)

ef(1) = ef(0) + 1

ef(0) = ef(1)

Hence S(Mn ) is cordial. 

Illustration 2.8. The cordial labelings of S(M3) and S(M4) are shown in Figure 4(a)

and 4(b).

(a) (b)

Figure 4: Cordial labelings of S(M3) and S(M4)

Theorem 2.9. The graph S(Fn ) is cordial for n  2.

Proof. Let G be Fn (n  2). The vertices are c,v1,v2,…,vn. Then S(G) has the vertices

c,v1,v2,…,vn, c,v1,v2,…,vn. The vertex labeling f : V(S(G))  {0,1} is given below.

f(c) = 1 and f(c) = 0

f(vi) = 0 and f(vi) = 1 for i = 1 to n.

The graph S(G) satisfies the conditions |vf(0)–vf(1)|1 and |ef(0)–ef(1)|  1

since vf(0) = vf(1) and ef(0) = ef(1) + 1 for n  2.

Hence S(Fn ) is cordial for n  2. 

Illustration 2.10. The cordial labelings of S(F4) and S(F5) are shown in Figure 5(a)

and 5(b).
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Figure 5: Cordial labelings of S(F4) and S(F5)

Theorem 2.11. The graph S(Km,n ) is cordial for any m, n N.

Proof. Let G be Km,n. Denote the vertices of Km,n as v1,v2,…,vm and u1,u2,…,un. Then

S(G) has the vertices v1,v2,…,vm,v1,v2,…,vm, u1,u2,…,un,u1,u2,…,un. The vertex

labeling f : V(S(G))  {0,1} is given below.

f(vi) = f(ui) = 1  and f(vi) = f(ui) = 0 if i is odd.

f(vi) = f(ui) = 0  and f(vi) = f(ui) = 1 if i is even.

The following table shows that the graph S(G) satisfies the conditions

|vf(0)–vf(1)|  1 and | ef(0)–ef(1)|1.

m n Vertex Conditions Edge Conditions

1

odd

odd

1

vf(0) = vf(1)

vf(0) = vf(1)

ef(1) = ef(0) + 1

ef(1) = ef(0) + 1

m = n and odd

others

vf(0) = vf(1)

vf(0) = vf(1)

ef(1) = ef(0) + 1

ef(0) = ef(1)

Hence S(Km,n ) is cordial. 

Illustration 2.12. The cordial labelings of S(K2,3) and S(K3,3) are shown in Figure

6(a) and 6(b).

(a) (b)

Figure 6: Cordial labelings of S(K2,3) and S(K3,3)
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Theorem 2.13. The graph S(  (k)
,n

)(
,n

)(
,n :...:K:KK 1

2
1

1
1 ) is cordial.

Proof. Let G be  (k)
,n

)(
,n

)(
,n :...:K:KK 1

2
1

1
1 . Let (i)

,nK1 , i = 1,2,..,k be copies of ,nK1 . Let vij

be the pendant vertices of (i)
,nK1 and ci be the apex vertex of (i)

,nK1 (i = 1,2,..,k and j =

1,2,.., n) and x1, x2,…, xn–1 be vertices such that ci–1 and ci are adjacent to xi–1, where

2  i  k.

Now S(G) has the vertices vij, vij, ci, ci, xi–1 and xi–1 vertices, where

i = 1,2,..,k and j = 1,2,..,n. The vertex labeling f : V(S(G))  {0,1} is given below.

For i = 1,2,..,k

f(vij) = 1 and f(vij) = 0 if j is odd,

f(vij) = 0 and f(vij) = 1 if j is even,

f(ci) = 1 and f(ci) = 0 if i is odd,

f(ci) = 0 and f(ci) = 1 if i is even,

f(xi) = 1 and f(xi) = 0 for i = 1 to n.

The graph S(G) satisfies the conditions | vf(0) – vf(1) |  1 and

| ef(0) – ef(1) | 1 since vf(0) = vf(1) for all n and k and ef(1) = ef(0) +1 if n and k are

odd, others ef(0) = ef(1) .

Hence S(  (k)
,n

)(
,n

)(
,n :...:K:KK 1

2
1

1
1 ) is cordial. 

Illustration 2.14. The cordial labelings of S(  )(
,

)(
,

)(
, :K: KK 3

31
2
31

1
31 ) and

S(  )(
,

)(
,

)(
,

)(
, :K:K: KK 4

41
3
41

2
41

1
41 ) are shown in Figure 7(a) and 7(b).
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(b)

Figure 7: Cordial labelings of S(  )(
,

)(
,

)(
, :K: KK 3

31
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31 ) and

S(  )(
,

)(
,

)(
,

)(
, :K:K: KK 4

41
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41
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41 )
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