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Abstract—This paper deals with a variable speed device to 

produce electrical energy on a power network, based on a 

doubly-fed induction generator (DFIG) supplied by a direct 

matrix converter used in wind energy conversion systems. In 

the first place, we carried out briefly a study of modelling on 

the whole system. In order to control the power flowing 

between the stator of the DFIG and the power network, a 

control law is synthesized using three types of controllers: PI, 

RST and sliding mode controllers. Their respective 

performances are compared in terms of power reference 

tracking, response to sudden speed variations, sensitivity to 

perturbations and robustness against machine parameters 

variations. 

Keywords—doubly fed induction motor (DFIM); power 

inverter; speed control; second order sliding mode. 

I. INTRODUCTION  

Wind energy is the most promising renewable source of 
electrical power generation for the future. Many countries 
promote the wind power technology through various national 
programs and market incentives. Wind energy technology has 
evolved rapidly over the past three decades with increasing 
rotor diameters and the use of sophisticated power electronics 
to allow operation at variable speed [1]. 

Doubly fed induction generator (DFIG) is one of the most 
popular variable speed wind turbines in use nowadays. It is 
normally fed by a voltage source inverter. However, currently 
the three phase matrix converters have received considerable 
attention because they may become a good alternative to 
voltage-source inverter Pulse Width-Modulation (PWM) 
topology. This is because the matrix converter provides bi-
directional power flow, nearly sinusoidal input/output 
waveforms, and a controllable input power factor. 
Furthermore, the matrix converter allows a compact design due 
to the lack of dc-link capacitors for energy storage. 
Consequently, in this work, a three-phase matrix converter is 
used to drive the DFIG. 

In recent years, a lot of works have been presented with 
diverse control diagrams of DFIG. These control diagrams are 
usually based on vector control notion with conventional PI 

controllers as proposed by Pena et al. in [2,3]. The similar 
conventional controllers are also used to realize control 
techniques of DFIG when grid faults appear like unbalanced 
voltages [4,5] and voltage dips [6]. It has also been shown in 
[7,8] that glimmer problems could be resolved with suitable 
control strategies. Many of these works prove that stator 
reactive power control can be an adapted solution to these 
diverse problems. 

This paper discusses the control of electrical power 
exchanged between the stator of the DFIG and the power 
network by controlling independently the active and reactive 
powers. After modeling the whole system, active and reactive 
powers provided by the DFIG are controlled using three types 
of controllers: Integral-Proportional (PI), an RST controller 
based on pole placement theory and sliding mode. Their 
performances are compared in terms of reference tracking, 
sensitivity to perturbations and robustness against machine's 
parameters variations. 

II. SYSTEM MODELING 

A. Wind turbine model  

For a horizontal axis wind turbine, the mechanical power 

captured from the wind is given by: 

  32

Pt v ρRβλ,CP
2

1
                           (1) 

Where, R is the radius of the turbine (m), ρ is the air density 

(kg/m3), v is the wind speed (m/s), and CP is the power 

coefficient which is a function of both tip speed ratio λ, and 

blade pitch angle β (deg). In this work, the CP equation is 

approximated using a non-linear function according to [9]. 

(λ 0 1)
C (0.5 0.167)(β 2)sin 0.0018 (λ 3)(β 2)P 18.5 0.3(β 2)

. 
        

   (2) 

The tip speed ratio is given by: 

v

R
λ tΩ
                                    (3) 
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Where Ωt is the angular velocity of Wind Turbine.

B. The matrix converter model  

 The matrix converter performs the power conversion 

directly from AC to AC without any intermediate dc link. It is 

very simple in structure and has powerful controllability. The 

converter consists of a matrix of bi-directional switches 

linking two independent three-phase systems.  Each output 

line is linked to each input line via a bi-directional switch. 

Figure 1 shows the basic diagram of a matrix converter. 

 The switching function of a switch Smn in figure 1 is given 

by : 

   cb,a,n ,CB,A,m
S0

S1
S    

     

     

mn

mn
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(4)   

 The mathematical expression that represents the operation 

of the matrix converter in figure 1 can be written as : 
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(6) 

 To determine the behavior of the matrix converter at output 

frequencies well below the switching frequency, a modulation 

duty cycle can be defined for each switch. 

 The input/output relationships of voltages and currents are 

related to the states of the nine switches and can be expressed 

as follows : 
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Fig. 1. Schematic representation of the matrix converter. 
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With : ,10  mnk

        

m = A, B, C,   n = a, b, c                   (9) 

The variables kmn are the duty cycles of the nine switches Smn 

and can be represented by the duty-cycle matrix k. In order to 

prevent a short circuit on the input side and ensure 

uninterrupted load current flow, these duty cycles must satisfy 

the three following constraint conditions : 

kAa + kAb + kAc =1                               (10) 

kBa + kBb + kBc =1                               (11) 

kCa + kCb + kCc =1                               (12) 

The high-frequency synthesis technique introduced by 

Venturini (1980) and Alesina and Venturini (1988), allows a 

control of the Smn switches so that the low frequency parts of 

the synthesized output voltages (Va, Vb and Vc) and the input 

currents (iA, iB and iC) are purely sinusoidal with the prescribed 

values of the output frequency, the input frequency, the 

displacement factor and the input amplitude.  
 The output voltage is given by : 

 
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 The running matrix converter with Venturini algorithm 

generates at the output a three-phases sinusoidal voltages 

system having in that order pulsation ωm, a phase angle θ and 

amplitude δ.Vs (0 < δ < 0.866 with modulation of the neural) 

[10]. 

C. The DFIG model  

 The application of Concordia and Park’s transformation to 

the three-phase model of the DFIG permits to write the 

dynamic voltages and fluxes equations in an arbitrary d–q 

reference frame: 

, 
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     The stator and rotor angular velocities are linked by the 
following relation : ωs = ω + ωr. 

     This electrical model is completed by the mechanical 
equation: 




 f
dt

d
JCC rem

                        

   (15) 

Where the electromagnetic torque Cem can be written as a 
function of stator fluxes and rotor currents : 

)( qrdsdrqs

s

em II
L

M
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(16) 

III. CONTROL STRATEGY OF THE DFIG 

 In order to easily control the production of electricity by 
the wind turbine, we will carry out an independent control of 
active and reactive powers by orientation of the stator flux. 
This orientation will be made in this work with a real model of 
the DFIG, i.e. without negligence of the stator resistance 
[11,12]. 

By choosing a reference frame linked to the stator flux, 
rotor currents will be related directly to the stator active and 
reactive power. An adapted control of these currents will thus 
permit to control the power exchanged between the stator and 
the grid. If the stator flux is linked to the d-axis of the frame 
we have: 

0   and    qssds 
                     

(17) 

And the electromagnetic torque can then be expressed as : 

dsqr

s

em I
L

M
pC 

                            

(18) 

By substituting Eq.17 in Eq.14, the following rotor flux 

equations are obtained : 
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In addition, the stator voltage equations are reduced to: 
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     By supposing that the electrical supply network is stable, 

having for simple voltage Vs, which led to a stator flux ψs 

constant. This consideration associated with Eq.18 shows that 

the electromagnetic torque only depends on the q-axis rotor 

current component. With these assumptions, the new stator 

voltage expressions can be written as follows: 
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Using Eq.19, a relation between the stator and rotor currents 
can be established : 
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The stator active and reactive powers are written: 
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By using Eqs.14, 17, 22 and 23, the statoric active and 
reactive power, the rotoric fluxes and voltages can be written 
versus rotoric currents as: 
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In steady state, the second derivative terms of the two 
equations in 27 are equal to zero. We can thus write: 
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The third term, which constitutes cross-coupling terms, can be 
neglected because of their small influence. These terms can be 
compensated by an adequate synthesis of the regulators in the 
control loops. 

IV. CONTROLLERS SYNTHESIS   

In this section, we have chosen to compare the 
performances of the DFIG with three different controllers: PI, 
RST and sliding mode  
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Fig. 2. System with PI controller. 

Based on relations (22), (24) and (27), the control system 
can be designed as shown in figure 1. The blocks R1, R2, R3 
and R4 represent respectively the stator powers and the rotor 
currents regulators. 

A.  PI regulator synthesis 

 This controller is simple to elaborate. Figure 2 shows the 

block diagram of the system implemented with this controller. 

The terms kp and ki represent respectively the proportional and 

integral gains. The quotient B/A represents the transfer 

function to be controlled, where A and B are presently defined 

as follows: 
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The regulator terms are calculated with a pole-
compensation method. The time response of the controlled 
system will be fixed at 10 ms. This value is sufficient for our 
application and a lower value might involve transients with 
important overshoots. The calculated terms are: 
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It is important to specify that the pole-compensation is not 
the only method to calculate a PI regulator but it is simple to 
elaborate with a first-order transfer-function and it is sufficient 
in our case to compare with other regulators. 

B. RST controller synthesis 

The block-diagram of a system with its RST controller is 

presented on figure 3 [13]. 

The system with the transfer-function B/A has Yref as 

reference and is disturbed by the variable ɣ. R, S and T are 

polynomials which constitutes the controller. In our case, we 

have: 

  ssrsrs MVBLMLLsRLA    and   2

      

(30) 

Where s is the Laplace operator.

 The transfer-function of the regulated system is : 
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By applying the Besout equation, we put : 

D = AS + BR = CF                               (32) 

Where C is the command polynomial and F is the 
filtering polynomial. In order to have a good adjustment 
accuracy, we choose a strictly proper regulator. So if A 
is a polynomial of n degree (deg(A)=n) we must have : 

deg(D)=2n+1, deg(S)=deg(A)+1, deg(R)=deg(A) 

In our case : 

 

 

Fig. 3. Power control of the DFIG. 
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Fig. 4. Block diagram of the RST controller. 
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To find the coefficients of polynomials R and S, the robust 
pole placement method is adopted with Tc as control horizon 
and Tf as filtering horizon [9]. We have: 
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Where pc is the pole of C and pf  the double pole of F. The pole 

pc must accelerate the system and is generally chosen three to 

five times greater than the pole of A pa.pf  is generally chosen 

three times smaller than pc. In our case: 
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Perturbations are generally considered as piecewise constant. 

ɣ can then be modelled by a step input. To obtain good 

disturbance rejections, the final value theorem indicate that the 

term )( BRASBS  must tend towards zero: 
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To obtain a good stability in steady-state, we must have 
D(0)≠0 and respect relation (36). The Bezout equation leads to 
four equations with four unknown terms where the 
coefficients of D are related to the coefficients of polynomials 
R and S by the Sylvester Matrix : 
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In order to determine the coefficients of T, we consider 
that in steady state Y must be equal to Yref  so: 

1lim
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
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(38) 

As we know that S(0)=0, we conclude that T=R(0). In 
order to separate regulation and reference tracking, we try to 

make the term )( BRASBT   only dependent on C. We then 

consider T=hF (where h is real) and we can write: 
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As T=R(0), we conclude that .)0()0( FRh   

C. Sliding mode controller synthesis 

The sliding mode is a technique to adjust feedback by 

previously defining a surface. The system which is controlled 

will be forced to that surface, then the behaviour of the system 

slides to the desired equilibrium point [14]. The main feature 

of this control is that we only need to drive the error to a 

“switching surface”. When the system is in “sliding mode”, 

the system behaviour is not affected by any modelling 

uncertainties and/or disturbances. The design of the control 

system will be demonstrated for a nonlinear system presented 

in the canonical form [15,16]: 

x = f(x,t)+B(x,t)V(x,t),xR
n
, VR

m
, ran(B(x,t)) = m    (40) 

With control in the sliding mode, the goal is to keep the system 
motion on the manifold S, which is defined as: 

S = {x : e(x, t)=0}                           (41) 

e = x
d
 - x                                   (42) 

Here e is the tracking error vector, x
d
 is the desired state, x is 

the state vector. The control input u has to guarantee that the 
motion of the system described in (40) is restricted to belong to 
the manifold S in the state space. The sliding mode control 
should be chosen such that the candidate Lyapunov function 
satisfies the Lyapunov stability criteria : 

,)(
2

1 2xS
   

).()( xSxS  
                   

(43)

                      

 

This can be assured for: 
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Here η is strictly positive. Essentially, equation (43) states that 
the squared “distance” to the surface, measured by e(x)

2
, 

decreases along all system trajectories. Therefore (44) satisfy 
the Lyapunov condition. With selected Lyapunov function the 
stability of the whole control system is guaranteed. The control 
function will satisfy reaching conditions in the following form: 

V
com

 = V
eq

 + V
n
                               (45) 

Here V
com

 is the control vector, V
eq

 is the equivalent control 
vector, V

n 
is the correction factor and must be calculated so that 

the stability conditions for the selected control are satisfied. 

V
n
 = K sat((S(x)/δ)                            (46) 

Sat ((S(x)/δ) is the proposed saturation function, δ is the 
boundary layer thickness. In this paper we propose the Slotine 
method [17]: 
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  e
dt

d
XS

n 1









 

                            

(47) 

Here, e is the tracking error vector, λ is a positive coefficient 
and n is the relative degree. 

In our study, we choose the error between the measured 
and references stator powers as sliding mode surfaces, so we 
can write the following expression: 
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(48) 

The first order derivate of (48), gives : 
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(49) 

Replacing the powers in (49) by their expressions given in 
(24), one obtains [18]: 
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(50) 

Vdr and Vqr will be the two components of the control vector 

used to constraint the system to converge to Sdq=0. The control 

vector Vdqeq is obtained by imposing 0dqS  so the equivalent 

control components are given by the following relation : 
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To obtain good performances, dynamic and commutations 

around the surfaces, the control vector is imposed as follows : 

)(K dqeqdqdq S satVV 

                        

(52) 

     The sliding mode will exist only if the following condition 

is met :  

0SS  

                                  

(53) 

V. SIMULATION RESULTS AND DISCUSSIONS  

    In this section, simulations are realized with a 5 KW 

generator coupled to a 380V/50Hz grid. Parameters of the 

machine are given in table 1. In the aim to evaluate the 

performances of the three controllers, three categories of tests 

have been realized: pursuit test, sensitivity to the speed 

variation and robustness against machine parameter variations 

A. Pursuit test 

 This test has for goal the study of the three controller’s 

behaviors in reference tracking, while the machine’s speed is 

considered constant at its nominal value. The simulation 

results are presented in figure 4. As it’s shown by this figure, 

for the three controllers, the active and reactive generated 

powers track their references. In addition and contrary to the 

PI controller where the coupling effect between the two axes 

is very clear, we can notice that the RST and SMC controllers 

ensures a perfect decoupling between them. Therefore we can 

consider that these controllers have a good performance for 

this test. 

B. Sensitivity to the speed variation 

 The aim of this test is to analyze the influence of a speed 

variation of the DFIG on active and reactive powers for the 

three controllers. For this objective and at time t = 3s, the 

speed was varied from 150 rad/s to 170 rad/s (Figure 6). The 

simulation results are shown in figure 7. This figure express 

that the speed variation produced a slight effect on the powers 

curves of the three controllers. This result is attractive for 

wind energy applications to ensure stability and quality of the 

generated power when the speed is varying.  

TABLE I.  MACHINE PARAMETERS.  

Parameters Value IS-Unit 

Nominal power 5 KW 

Stator  voltage 380  V 

Stator frequency 50  Hz 

Number of pairs poles 3   

Nominal speed 150  rad/s 

Stator  resistance 0.95 Ω 

Rotor  resistance 1.8 Ω 

Stator  inductance 0.094 H 

Rotor  inductance 0.088 H 

Mutual  inductance 0.082 H 

 

C. Robustness  

 In order to test the robustness of the used controllers, the 

stator and the rotor resistances Rs and Rr are doubled and the 

values of inductances Ls, Lr and M are divided by 2. The 

machine is running at its nominal speed. The results presented 

in figure 8 show that parameters variations of the DFIG 

increase slightly the time-response of the RST controller. On 

the other hand this results show that parameter variations of 

the DFIG presents a clear effect on the powers curves (their 

errors curves) and that the effect appears more significant for 

PI and RST controllers than that with SMC one. Thus it can be 

concluded that this last is the most robust among the proposed 

controllers studied in this work. 
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Fig. 5. Reference tracking. 

 
Fig. 6. Mechanical speed profile. 

 

 

Fig. 7. Sensitivity to the speed variation. 

 
Fig. 8. Sensitivity to the DFIG’s parameters variation on the DFIG control. 

VI. CONCLUSION  

    The modeling, the control and the simulation of an 

electrical power electromechanical conversion system based 

on the doubly fed induction generator (DFIG) connected 

directly to the grid by the stator and fed by a direct matrix 

converter on the rotor side has been presented in this study. 

Our objective was the implementation of a robust decoupled 

control system of active and reactive powers generated by the 

stator side of the DFIG, in order to ensure of the high 

performance and a better execution of the DFIG, and to make 

the system insensible with the external disturbances and the 

parametric variations. In the first step, we started with a study 

of modeling on the doubly fed induction generator. 

 In the first step, we started with a study of modeling on the 

matrix converter controlled by the Venturini modulation 

technique. In second step, we adopted a vector control strategy 

in order to control the stator active and reactive powers 

exchanged between the DFIG and the grid. Contrary to the 

previous work carried out on the DFIG where the researchers 

always neglect the stator resistance to facilitate its control, in 

our work this resistance was not neglected in order to return 

the system studied near to reality. In third step, three different 

controllers are synthesized and compared. In term of power 

reference tracking with the DFIG in ideal conditions (no 

parameters variations and no disturbances), the SMC and RST 

controllers ensure a perfect decoupling between the two axes 

comparatively to the PI one where the coupling effect between 

them is very clear. 

 When the machine’s speed is modified (which represents a 

perturbation for the system), the impact on the active and 

reactive powers values is almost negligible for the three 

controllers. A robustness test has also been investigated where 

the machine parameters have been modified. These changes 

induce some disturbances on the powers responses but with an 
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effect almost doubled with the PI and RST controllers than on 

that with SMC one. 

 Basing on all these results it can be concluded that robust 

control method as SMC can be a very attractive solution for 

devices using DFIG such as wind energy conversion systems.      
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