
D. Contras, O. Matei / Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 7-12 7

ISSN 1844 – 9689 http://cjece.ubm.ro

Why Evolutionary Ontologies are not Genetic

Programming

Diana Contraș

Dept. of Automation

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

diana.contras@profinfo.edu.ro

Oliviu Matei

Dept. of Electrical Engineering

TUC, North University Centre of Baia Mare

Baia Mare, Romania

oliviu.matei@cunbm.utcluj.ro

Abstract—Recently, the concept of evolutionary ontologies

(EO) has been introduced. Ever since there are debates whether

or not EO’s are genetic algorithms or genetic programming (GP).

This article makes a comparison between genetic programming

(GP) and evolutionary ontologies (EO). Between the two there

are significant differences, which make them completely distinct,

although for some specific representations of the ontologic

individuals, such as RDF, there are some similarities. However,

we prove that there is a large gap between GP's and EO's, which

impose EO’s as a new, completely different field of evolutionary

computation.

Keywords—computational intelligence; evolutionary

computation; genetic algorithms; genetic programming;

optimization

I. INTRODUCTION

Evolutionary computation is a field of artificial
intelligence which deals with evolutionary principles such as
natural selection and genetic inheritance in order to solve
continuous optimization and combinatorial optimization
problems.

The major classical domains for evolutionary
computations are: genetic algorithms (GA), evolutionary
strategies (ES), genetic programming (GP).

Genetic programming (GP) introduced by Koza [25] is
aimed at designing, in the evolutionary manner, calculation
methods (such as programs, algorithms) or structures (such as
circuits, decision tree). Their principles are based on genetic
algorithms, but the individuals are programs that evolve,
rather than numbers of binary strings. Koza implemented GP
using LISP language [25], which is a functional programming
language with a tree-like structure of functions. That is why
the classical approaches to GP are tree-based. But, again, the
GP is not about evolving trees, but programs.

In [32] Matei et al. have introduced the term of
evolutionary ontologies (EO). They are evolutionary
algorithms which manipulate ontologies as individuals. The
use of ontologies is wide as there is knowledge available for
many fields, such as biology [27], medicine [31], product
development [29, 39, 40, 43], design [2, 9], geosciences [20,
30], management [6, 36], semantic web [14], even for traffic
safety [7], financial decision [15] or more specific areas, such
as the design of data summarization engine [50] and the
architecture of the enterprise [21]. The evolutionary

computation has the strength of exploring all those ontologies
in a wise way.

Ever since, there is a debate whether or not evolutionary
ontologies are in fact genetic programming. In this article we
will show several reasons for which EO's are a different field
of genetic computation than GP, although they share some
commons aspects.

The rest of the paper is organized as follows. In section II
an overview of genetic programming is presented, then, in
section III we describe the evolutionary ontologies and,
finally, in section IV, the major differences between the two
concepts are detailed, while the conclusions are drawn in
section V.

II. GENETIC PROGRAMMING

Genetic programming addresses one of the central goals of
computer science, namely automated programming, whose
goal is to create, in an automated way, a computer program
that enables the computer to solve the problem. As Arthur
Samuel stated in [45], the goal of automatic programming
concerns: "How can computers be made to do what needs to
be done, without being told exactly how to do it?"

A. GP individuals

Cramer [11] and Koza [25], suggested that tree structure
should be used as the representation of an individual. Cramer
published the first method like this and used subtree crossover.
Other innovative implementations followed evolving in LISP
and PROLOG ([12, 17]). Koza, however, was the first that
recognized the importance of the method and demonstrated its
feasibility for automatic programming in general.

Graphs are the newest arrival of the fundamental program
structures [28, 49]. Teller and Veloso [48] proposed the name
PADO for a graph-based GP system. Graphs are capable of
representing very complex program structures compactly. A
graph structure is no more than nodes connected by edges.
One may think of an edge as a pointer between two nodes
indicating the direction of the flow of program control. PADO
does not just permit loops and recursion, but it embraces them.
This is not a trivial point: other GP systems have
experimented with loops and recursion only gingerly because
of the great difficulties they cause.

D. Contras, O. Matei / Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 7-12 8

ISSN 1844 – 9689 http://cjece.ubm.ro

B. GP selection

The most commonly used selection method in genetic
algorithms is roulette wheel selection, but in GP, according to
[25] there are notably alternative methods such as tournament
selection and rank selection. According to [44], in GP
tournament selection is preferred to other types of selections
because the rank that is used to select the winner is ordinal
which means that is not depending on the total fitness value of
the population.

However, according to [52], there are two situations that
should be considered in terms of tournament selection in GP.
The first one is called multi-sampled, when the some
individuals in population are chosen many times to form the
tournament. The second one is called not-sampled, when some
individuals are never chosen as part of the tournament. In [52]
it is shown that different sampling replacement strategies have
not important impact on selection pressure and using them
cannot adjust the selection pressure in dynamic evolution. So
the solution is to develop automatic and dynamic selection
pressure tuning methods instead of alternative sampling
replacement strategies.

C. GP crossover

The crossover operator combines the genetic material of
the two parents by swapping a part of one parent with a part of
the other. We will discuss tree, linear and graph crossover
separately.

The tree-based crossover, proceeds by the following steps:

 Choose two individuals as parents, based on mating
selection policy. Usually, this policy is similar to the
one described for genetic algorithms. However, one
can use any kind of selection.

 Select a random subtree in each parent. The selection
of subtrees can be biased so that subtrees constituting
terminals are selected with lower probability than other
subtrees.

 Swap the selected subtrees between the two parents.
The resulting individuals are the children.

The tree-based crossover swaps subtrees [37]; linear
crossover (applicable for linear individuals) swaps segments
of code between the parents [38].

The steps in linear crossover are:

 Choose two individuals as parents, based on mating
selection policy. Usually, this policy is similar to the
one described for genetic algorithms. However, one
can use any kind of selection. This steps is the case as
for tree-based crossover.

 Select a random sequence of instructions in each
parent.

 Swap the selected sequence between the two parents.
The resulting individuals are the children.

Graph crossover is somehow more complicated. The
following procedure is employed by Teller [48]:

 Choose two individuals as parents, based on mating
selection policy. Usually, this policy is similar to the
one described for genetic algorithms. However, one
can use any kind of selection. This steps is the case as
for tree-based crossover.

 Divide each graph into two node sets: label all edges
(pointers, arcs): as internal if they connect nodes within
a fragment; as external otherwise and label nodes in
each fragment as output if they are the source of an
external edge and as input if they are the destination of
an external edge.

 Swap the selected fragments between the parents.

 Recombine edges so that all external edges in the
fragments now belonging together point to randomly
selected input nodes of the other fragments.

With this method, all edges are assured to have
connections in the new individual and valid graphs have been
generated.

D. GP mutation

According to [42] in GP mutation has been studied since
the early 80. However Koza [25] has not used mutation,
wanting to prove that it is not necessary in GP. In [42] is
stated that nowadays GP mutation is used mainly in modeling
applications. Mutation operators are different depending on
the method of representation – tree, linear or graph.

In case of tree representation are several types of mutation
operators [42]:

 Subtree mutation: a subtree is selected randomly and is
replaced with another randomly created subtree [25].

 Size-fair subtree mutation: was introduced by Langdon
[26]. Using this mutation operator, the new subtree is,
on average, the same size as the subtree to be replaced.

 Node replacement mutation: it is also known as point
mutation. A node of the tree is selected randomly and
is replaced with another node. In [33] is stated that in
order to remain the tree legal the created node has to
have the same number of parameters as the node that is
replaced.

 Hoist mutation: introduced by Kinnear in [24]
determine the random choice of a non-terminal node
and converting the node and its subtree into the main
tree.

 Shrink mutation: a subtree is selected randomly and is
replaced with a randomly created terminal, according
to [5]. This kind of operator is used in order to reduce
program size.

 Permutation mutation: a function node is selected
randomly then its arguments are randomly permuted
[25].

For the tree individuals, the mutation operator randomly
selects a node in the tree and replaces the select subtree with a

D. Contras, O. Matei / Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 7-12 9

ISSN 1844 – 9689 http://cjece.ubm.ro

new randomly generated subtree. The new subtree is created
in the same way as the programs in the initial population.

In linear GP, mutation is a little different [8]. The mutation
operator selects an instruction from an individual. Then, it
makes one or more changes in that instruction.

Suppose we have the instruction r0 + r1 = r2 has been
chosen for mutation. The following changes can occur: any of
the operands can be changed to another randomly chosen
operand or the operator can be replaced by another valid
operator. Some mutation for the above instruction are r1 = r1 +

r2 or r0 = r2 + r2 or r0 = r1 OR r2.

In [41] Parallel Distributed Genetic Programming (PDGP),
a new form of genetic programming, was introduced, for the
programs with parallelism. In PDGP the programs are
represented as graphs and the mutation operator was adapted
to this representation, resulting two forms of mutation: global
mutation and link mutation. The first type of mutation
generates a random subgraph that is inserted into the parent
graph. The second type of mutation, change a randomly
chosen link of a randomly chosen node from the graph.

III. EVOLUTIONARY ONTOLOGIES

An ontological evolutionary algorithm is a genetic
algorithm in which the individuals are ontologies rather than
any other data structure. The solution space, the restriction and
bounderies of this evolution is defined by means of an
ontological space (called onto-space).

According to [32], the onto-space is an ontology
describing a domain specific knowledge, containing all the
concepts along with their allowed and denied relationships.
The onto-space defines the degrees of freedom as well as the
boundaries of the solution space to be searched by the
evolutionary process. Quite often, the solution space is infinite
and special algorithms are needed for exploring it efficiently.
An onto-space would be the ontology about all electronic
appliances and the solution required to be found is a possible
arrangement of a kitchen given some restrictions.

Formally, an onto-space is OS = (C, P, I), where C is the
set of classes, P is the set of properties and I is the set of
instances. Within the ontology OS, there are two disjunctive
sub-ontologies OSe = (Ce, Pe, Ie) and OSf= (Cf, Pf, If), with

OSeOSfOS. OSe is the sub-ontology which will undergo
the evolutionary process and OSf is the fixed sub-ontology,
e.g. which will not change under the evolutionary process.

A. EO individuals

An individual is a subset of the ontology, represented as
Ch = (SC, SP, SI) where SC is a subset of classes in OS, SP is
a subset of properties in OS and SI is a subset of instances in
OS. Furthermore, an individual of EO consists of an evolving
part Che, which will be subject to genetic operators, and a
fixed part Chf. The two parts hold the following relations:

CheChf = Ch and CheChf=. Moreover: CheOSe,

ChfOSf, ChOS.

A population consists of a given () such individuals does
not necessarily cover the entire onto-space, therefore

 (1)

B. EO selection

Evolutionary ontologies are permissive, so selection
operators can be folded easily on their technique. Roulette
wheel selection, where the participants at the evolutionary
process are chosen based on the fitness function (meaning the
higher the fitness function is, the better the chance that a
chromosome to be elected), is a good option for EO.

The deterministic selection, is also suitable for EO. In the

case of (µ,)-selection,  parents produce  (offspring
and only the offspring undergo selection, while in the case of

(µ+)-selection both parents and offspring are involved in the
evolutionary process.

In EO, both, Monte Carlo and deterministic techniques are
used, depending on the specific problem to be solved. Thus, if
the fitness function has subjective nature, it requires the use of
Monte Carlo techniques, such as in the case of an application
for automatic generation of scenes, where the grade that
reflect user satisfaction is the fitness function. But if it is an
application for automatic generation of products, where cost or
time of production are objective parameters, deterministic
technique must be used.

C. EO crossover

In the case of EO, we can talk about three distinctive
crossover operators.

Class crossover: in an ontology classes are organized
hierarchically. Two parents are randomly selected as two
groups of related classes and subclasses, a cutting point is
chosen, it changes between the two parent classes to the point
of cutting and the two resulted groups are the offspring. In
doing so is likely the ontology to become inconsistent. In such
cases the repair operator will be used to validate the ontology.

Instance crossover: in an ontology for each class can be
established as many individuals as wanted. The individuals are
not independent, but related through object properties. Two
such groups of related instances are selected as two parents. A
cutting point is chosen and the instances that follow the
cutting point are interchanged between parents, resulting two
offspring. In case of inconsistencies is recommended the
repair operator.

Relational crossover: in an ontology, there are two types of
properties: the object properties and the data properties.
Regarding object properties crossover, are elected two object

properties P1 and P2 as parents, P1, P2  P. Each property has
a domain and a range from among the classes C11P1C12 and

C21P2C22, with C11, C12, C21, C22  C and it materializes in

relating the instances: I11P1I12 and I21P2I22 where I11C11,

I12C12, I21C21 and I22C22. After crossover are obtained two
offspring, as follow I21P1I12 and I11P2I22 or I11P1I22 and I21P2I12.

D. Contras, O. Matei / Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 7-12 10

ISSN 1844 – 9689 http://cjece.ubm.ro

As in the class crossover case, the result may be inappropriate.
The repair operator will remove the inconsistency.

In an ontology each data property (DP) has a domain from
among the classes and a range from different datatypes like
int, integer, double, float etc. For data property crossover are
elected two classes with several data properties as parents:
C1(DP11, DP12, …, DP1k, …, DP1n) and C2(DP21, DP22, …,
DP2k, …, DP2n). A cuting point is selected and the result of the
crossover will be the same classes with modified properties:
C1(DP21, DP22, …, DP2k, …, DP1n) and C2(DP11, DP12, …,
DP1k, …, DP2n). The repair operator will be also applied if
appropriate result is not obtained.

D. EO mutation

The mutation operator is applied for each individual with a
probability pm and requires different treatment for classes, for
instances, respectively for properties.

Instance mutation means replacing a randomly selected

instance I1 belonging to a class C1 (I1C1) with another
instance from the same class C1 (but not from the subclasses
of the class C1). This operator preserves the number of
ontological instances in an individual.

A class mutation means replacing all the instances in a
class C1 by other instances belonging to a random subclass of
the class C1 in the onto-space.

The property mutations may be approached separately for
data properties, respectively for object properties. Mutation of
data properties for an instance, means the replacement value
of the instance with another value of the same data type as the
initial value. Mutation of an object property means to replace
with its inverse, if it exists, or with another suitable object-
property which is currently out the OS, or to replace one of the
instances it relates to another instance of the same class or its
subclasses as the initial instance.

E. Repair operator

The individuals of EO are complex data structures, not
simple as binary strings. Due to their complexity,
inconsistencies may arise after the evolutionary process. That
is why Matei et al. [32] introduced a new operator, called
repair, which is a deterministic operator. It can be applied on
the population each time another genetic operator is used or
only once, after crossover and mutation. Repairing an
individual means adjusting its instances and properties so that
they respect all the rules defined in the onto-space.

IV. GENETIC PROGRAMMING VS EVOLUTIONARY ONTOLOGIES

Evolutionary computation works with numbers rather than
symbols, therefore is a sub-symbolic field of artificial
intelligence [23]. From this point of view, we can affirm that
evolutionary ontologies are symbolic simply because
ontologies are symbolic intelligence [1, 22]. This is not the
first attempt to create a bridge between the two domains:
symbolic and subsymbolic. Thus, Goertzel presented in [19] a
detailed design for incorporation of a subsymbolic system and
a symbolic system into a integrative cognitive architecture, as

a hybridization approach, and Andrews et al. offer a survey on
the artificial neural networks in [4]. However, it is for the first
time when Matei et al. [32] apply the genetic principles to
ontologies. Evolutionary ontologies combine mathematical
algorithms and ontologies, therefore they are not pure
symbolic because they evolve using mathematical principles,
which is never the case of other symbolic fields, such as
knowledge-based systems [3, 18] and intelligent agents [47,
51].

All the elements of the evolutionary ontologies, meaning
classes, instances, relations, properties participate at the
evolutionary process. Thus we can conclude that the
individuals of EO are ontologies themselves. In EO classes
and instances receive improved properties and relations as the
result of their participation in the evolutionary act. On the
other hand, the individuals of GP are source codes or more
simply programs. Evolving programs is a difficult job that
does not generally lead to some spectacular results. Therefore
in GP is used the representation of the programs as trees (e.g.
in LISP). Thus the evolution in GP does not imply
evolutionary trees, but evolving programs thereby the result is
a program that contains new and/or modified code sequences
representing the optimal solution.

Four types of crossover operator are found in EO: class
crossover, instance crossover and two types of crossover based
on ontology properties. The four types of operators behave
differently depending on individuals used as operands. Class
crossover operator generates a new structure of evolutionary
ontology classes. Instance crossover results in modification of
genetic individual instances. Finally, properties crossover
determine new relations or new properties in the onto-space.
In GP three types of crossover operator are mentioned: tree-
based crossover, linear crossover and graph crossover. The
tree-based crossover operator generates mutual exchange of
subtrees. If the tree is the representation of a program then the
crossover operator means joining some sequences of source
code to sequences from other source code. In the case of linear
crossover the exchange is made between sequences of
instructions. The last type of crossover operator in GP, graph
crossover, interchange subgraphs such that the resulted graphs
to respect the relation between nodes and edges.

Four types of mutation operator are also encountered in
EO depending on which element from the onto-space they are
applied. Class mutation generates a new class structure by
replacing all instances of a class with the instances of a
random subclass of that class. Instance mutation signify the
replacement of an instance with another instance from the
same class as the initial instance, i.e the introduction of new
instances into genetic individuals. Data property mutation
means the change of the initial value depending on the type of
data. The main contribution of object property mutation is the
mirror effect, by replacing a relation with its inverse. In GP
are identified three types of mutation operator: for tree
representation, for linear representation and for graph
representation. They are different types of operators with
different results. In the tree representation we witness to
modifying a node or subtree. Regarding linear representation,
the mutation determine the change of an operator or an

D. Contras, O. Matei / Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 7-12 11

ISSN 1844 – 9689 http://cjece.ubm.ro

operand from an instruction. For graph representation, two
forms of mutation are identified which generate the change of
a subgraph or of a node’s link.

The selection operator used in EO is based on the models

used in evolutionary strategies, namely (µ,)-selection or

(µ+)-selection or on the model used in genetic algorithms, as
Monte Carlo technique, unlike GP where is used mainly
tournament selection.

The repair operator is mandatory in evolutionary
ontologies, to remove inconsistencies generated by crossover
and mutation. In GP repair operator is mentioned [13, 16, 46],
but it is not imposed.

Other operators outside the standard ones were introduced
in GP. Thus, new operators called geometric semantic
operators were presented in [35]. Another new operator in GP
called forking was introduced in [34]. EO hold classical
genetic operators: selection, crossover, mutation, that have
been adapted to the ontological character of the individuals or
are completely new operators (as relational crossover and
relational mutation). Further we consider as future work in EO
the implementation of new operators due to the complexity of
the genetic individuals.

V. CONCLUSIONS

The gap between GP and EO, shown in Table I is so large
that make the evolutionary ontologies a distinct domain.

TABLE I. THE DIFFERENCES BETWEEN GP AND EO

Aspect GP instantiation of the

aspect

EO instantiation of the

aspect

Inteligence

level

Subsymbolic, entirely

mathematical algorithms

Symbolic concepts evolved

with subsymbolic

algorithms

Solution

space

The set of programs,

defined depending on the

problem at hand

An ontological space

containing the possible

instances and their relations

The

individuals

Programs Ontologies

Crossover Three basic types

tree-based crossover,
linear crossover, graph

crossover

Actually we have four

different operators, one for
classes, one for instances

and two for properties

Mutation Three basic types

 for tree representation,
for linear representation,

for graph representation

Like in the case of

crossover, there are four
different mutations for

classes, instances, data
properties and object

properties

Repair

operator

 Needed sometimes,

although it did not exist
in the early stages of GP

Absolutely needed as the

individuals may contain
very complex internal and

external relations

Selection Tournament selection Deterministic or Monte

Carlo based

New

operators

Geometric semantic

operators

Forking operator

New specific operators may

be defined because

ontologies imply different
concepts and princples

In this article we show that between evolutionary
ontologies and genetic programming there are significant

differences, although they are both fields of genetic
computation and share common aspects:

 both are fields of evolutionary computation;

 their algorithms are very similar, implying individuals
which evolve undergoing some genetic operators, out
of which three are classical: crossover, mutation and
selection;

 both have the purpose of optimization;

 in certain cases, the representation of individuals is
tree-based, therefore some operators (crossover and
mutation) may be similar, however, not identical.

As future work, evolutionary computation and ontologies
may be used together, especially in the context of multi-agent
systems, which are complicated and hard to create, according
to [10].

ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Communitys Seventh Framework
Programme under grant agreement No609143 Project
ProSEco.

REFERENCES

[1] D. Aerts, and M. Czachor, “Quantum aspects of semantic analysis and
symbolic artificial intelligence,” arXiv preprint quant-ph/0309022, 2003.

[2] Y. Afacan, and H. Demirkan, “An ontology-based universal design
knowledge support system,” Knowledge-based systems, vol. 24, no. 4,
pp. 530-541, 2011.

[3] R. Akerkar, and P. Sajja, Knowledge-based systems, Jones & Bartlett
Publishers, Sudbury, MA, pp. 244-335, 2010.

[4] R. Andrews, J. Diederich, and A. B. Tickle, “Survey and critique of
techniques for extracting rules from trained artificial neural networks”
Knowledge-based systems, vol. 8, no. 6, pp. 373-389, 1995.

[5] P. J. Angeline, “An investigation into the sensitivity of genetic
programming to the frequency of leaf selection during subtree
crossover,” Proceedings of the 1st annual conference on genetic
programming, Cambridge, Massachusetts, USA: July 28-31, pp. 21-29,
1996.

[6] D. Apostolou, G. Mentzas, and A. Abecker, “Managing knowledge at
multiple organizational levels using faceted ontologies,” Journal of
Computer Information Systems, vol. 49, no. 2, pp. 32-49, 2008.

[7] J. Barrachina, P. Garrido, M. Fogue, F. J. Martinez, J. C. Cano, C. T.
Calafate, and P. Manzoni, “VEACON: A Vehicular Accident Ontology
designed to improve safety on the roads,” Journal of Network and
Computer Applications, vol. 35, no. 6, pp. 1891-1900, 2012.

[8] M. Brameier, and W. Banzhaf, “A comparison of linear genetic
programming and neural networks in medical data mining,”
Evolutionary Computation, IEEE Transactions on, vol. 5, no. 1, pp. 17-
26, 2001.

[9] D. Contras, and A. Pintescu, “Defining spatial relations in a specific
ontology for automated scene creation,” Carpathian Journal of
Electronic and Computer Engineering, vol. 6, no. 1, pp. 50-55, 2013.

[10] C. Costea, “Distributed Constraint Optimization in Microgrid
Operations”, Carpathian Journal of Electronic and Computer
Engineering, vol. 3, no. 1, pp. 13-16, 2010.

[11] N. L. Cramer, “A representation for the adaptive generation of simple
sequential programs,” Proceedings of the First International Conference
on Genetic Algorithms, Pittsburgh, Pennsylvania, USA: July 1985, pp.
183-187.

D. Contras, O. Matei / Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 7-12 12

ISSN 1844 – 9689 http://cjece.ubm.ro

[12] D. Dickmanns, J. Schmidhuber, and A. Winklhofer, “Der genetische
algorithmus: Eine implementierung in prolog,”
Fortgeschrittenenpraktikum, Institut fur Informatik, Lehrstuhl Prof.
Radig, Technische Universit at Munchen, 1987.

[13] J. H. Drake, M. Hyde, K. Ibrahim, and E. Ozcan, “A genetic
programming hyper-heuristic for the multidimensional knapsack
problem,” Kybernetes, vol. 43, no. 9/10, pp. 1500-1511, 2014.

[14] H. J. Du, D. H. Shin, and K. H. Lee, “A sophisticated approach to
semantic web services discovery,” Journal of Computer Information
Systems, vol. 48, no. 3, pp. 44-60, 2008.

[15] J. Du, and L. Zhou, “Improving financial data quality using ontologies,”
Decision Support Systems, vol. 54, no. 1, pp. 76-86, 2012.

[16] A. A. Freitas, “A genetic programming framework for two data mining
tasks: classification and generalized rule induction,” Genetic
Programming 1997: Proc 2nd Annual Conf. Morgan Kaufmann,
Stanford University, CA, USA: July 1997, pp. 96-101.

[17] C. Fujiki, “Using the genetic algorithm to generate LISP source code to
solve the prisoner's dilemma,” Genetic algorithms and their applications:
proceedings of the second International Conference on Genetic
Algorithms, Cambridge, Massachusetts, USA: July 28-31, 1987, pp.
236-240.

[18] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M.
Crubézy, H. Eriksson, F. N. Noy, and S. W. Tu, “The evolution of
Protégé: an environment for knowledge-based systems development,”
International Journal of Human-computer studies, vol. 58, no. 1, pp. 89-
123, 2003.

[19] B. Goertzel, Perception processing for general intelligence: Bridging the
symbolic/subsymbolic gap, Artificial General Intelligence. Springer
Berlin Heidelberg, pp. 79-88, 2012.

[20] C. T. Jung, C. H. Sun, and M. Yuan, “An ontology-enabled framework
for a geospatial problem-solving environment,” Computers,
Environment and Urban Systems, vol. 38, pp. 45-57, 2013.

[21] L. A. Kappelman, and J. A. Zachman, “The enterprise and its
architecture: ontology & challenges,” Journal of Computer Information
Systems, vol. 53, no. 4, pp. 87-95, 2013.

[22] P. D. Karp, “Pathway databases: a case study in computational symbolic
theories,” Science, vol. 293, no. 5537, pp. 2040-2044, 2001.

[23] T. D. Kelley, “Symbolic and sub-symbolic representations in
computational models of human cognition what can be learned from
biology?,” Theory & Psychology, vol. 13, no. 6, pp. 847-860, 2003.

[24] K. E. Kinnear Jr, “Evolving a sort: Lessons in genetic programming,”
Neural Networks IEEE International Conference on. IEEE, San
Francisco, California, USA: March 28-April 1, 1993, pp. 881-888.

[25] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection, (Vol. 1), MIT press, Cambridge,
Massachusetts, 1992, pp. 71-78, pp. 91, pp. 108, pp. 604.

[26] W. B. Langdon, “The evolution of size in variable length
representations,” Evolutionary Computation Proceedings, 1998. IEEE
World Congress on Computational Intelligence, The 1998 IEEE
International Conference on. IEEE, Anchorage, AK, USA: May 4-9,
1998, pp. 633-638.

[27] S. E. Lewis, “Gene Ontology: looking backwards and forwards,”
Genome Biology, vol. 6, no. 1, pp. 103, 2005.

[28] X. Li, and K. Hirasawa, “Continuous probabilistic model building
genetic network programming using reinforcement learning,” Applied
Soft Computing, vol. 27, pp. 457-467, 2015.

[29] S. C. J. Lim, Y. Liu, and W. B. Lee, “A methodology for building a
semantically annotated multi-faceted ontology for product family
modelling,” Advanced Engineering Informatics, vol. 25, no. 2, pp. 147-
161, 2011.

[30] X. Ma, E. J. M. Carranza, C. Wu, and F. D. van der Meer, “Ontology-
aided annotation, visualization, and generalization of geological time-
scale information from online geological map services,” Computers &
geosciences, vol. 40, pp. 107-119, 2012.

[31] O. Matei, “Defining an Ontology for Diagnosis Based on Radiographic
Images,” Carpathian Journal of Electronic and Computer Engineering,
vol. 1, no. 1, 2008.

[32] O. Matei, D. Contras, and P. Pop, “Applying evolutionary computation
for evolving ontologies,” Evolutionary Computation (CEC), 2014 IEEE
Congress on. IEEE, Beijing, China: July 6-11, 2014, pp. 1520-1527.

[33] B. McKay, M. J. Willis, and G. W. Barton, “Using a tree structured
genetic algorithm to perform symbolic regression,” Genetic Algorithms
in Engineering Systems: Innovations and Applications, 1995.
GALESIA. First International Conference on (Conf. Publ. No. 414).
IET, Sheffield, UK: 12-14 Sep. 1995, pp. 487-492.

[34] A. Meier, M. Gonter, and R. Kruse, “Accelerating convergence in
cartesian genetic programming by using a new genetic operator,”
Proceedings of the 15th annual conference on Genetic and evolutionary
computation. ACM, Amsterdam, Netherlands: July 06 - 10, 2013, pp.
981-988.

[35] A. Moraglio, K. Krawiec, and C, G. Johnson, “Geometric semantic
genetic programming,” Parallel Problem Solving from Nature-PPSN
XII. Springer Berlin Heidelberg, 2012, pp. 21-31.

[36] D. L. Nastasie, and A. Koronios, “A Multidimensional Perspective on
the Diffusion of Ontologies,” Journal of Computer Information Systems,
vol. 51, no. 2, pp. 49-59, 2010.

[37] A. C. N. Ngomo, and K. Lyko, “Eagle: Efficient active learning of link
specifications using genetic programming,” The Semantic Web:
Research and Applications. Springer Berlin Heidelberg, 2012, pp. 149-
163.

[38] M. Oltean, “Evolving evolutionary algorithms using linear genetic
programming,” Evolutionary Computation, vol. 13, no. 3, pp. 387-410,
2005.

[39] A. Petrovan, M. Lobontiu, and S. Ravai Nagy, “Broadening the Use of
Product Development Ontology for One-off Products,” Applied
Mechanics and Materials, vol. 371, pp. 878-882, 2013.

[40] A. Petrovan, M. Lobontiu, G. Lobontiu, and S. Ravai-Nagy, “Overview
on Equipment Development Ontology,” Applied Mechanics and
Materials, vol. 657, pp. 1066-1070, 2014.

[41] R. Poli, “Evolution of Graph-Like Programs with Parallel Distributed
Genetic Programming,” ICGA, pp. 346-353, 1997.

[42] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to
genetic programming. Lulu. com, 2008, pp. 42-44.

[43] K. Rahmani, and V. Thomson, “Ontology based interface design and
control methodology for collaborative product development,” Computer-
Aided Design, vol. 44, no. 5, pp. 432-444, 2012.

[44] R. Riolo, T. Soule, and B. Worzel, Genetic programming theory and
practice IV, Vol. 4. Springer Science & Business Media, New York,
2007, pp.172-176.

[45] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of research and development, vol. 44, no. 1.2,
pp. 206-226, 2000.

[46] L. Spector, and T. Helmuth, “Uniform linear transformation with repair
and alternation in genetic programming,” Genetic Programming Theory
and Practice XI. Springer New York, 2014, pp. 137-153.

[47] K. Sycara, A. Pannu, M. Williamson, D. Zeng, and K. Decker,
“Distributed intelligent agents,” IEEE Intelligent Systems, vol. 11, no. 6,
pp. 36-46, 1996.

[48] A. Teller, and M. Veloso, “PADO: Learning Tree Structured Algorithms
for Orchestration into an Object Recognition System,” No. CMU-CS-
95-101. Carnegie-Mellon Univ. Pittsburgh PA Dept. of Computer
Science, 1995.

[49] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. Galván-López,
“Semantically-based crossover in genetic programming: application to
real-valued symbolic regression,” Genetic Programming and Evolvable
Machines, vol. 12, no. 2, pp. 91-119, 2011.

[50] H. Wang, and S. Wang, “Ontology-based data summarization engine: a
design methodology,” Journal of Computer Information Systems, vol.
53, no. 1, pp. 48-56, 2012.

[51] M. Wooldridge, and N. R. Jennings, “Intelligent agents: Theory and
practice,” The knowledge engineering review, vol. 10, no. 2, pp. 115-
152. 1995.

[52] H. Xie, and M. Zhang, Sampling Issues of Tournament Selection in
Genetic Programming. School of Engineering and Computer Science,
Victoria University of Wellington, 2009.

D. Contras, O. Matei / Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 7-12 13

ISSN 1844 – 9689 http://cjece.ubm.ro

