Mosquito larvicidal and ovicidal properties of *Pithecellobium dulce* (Roxb.) Benth. (Fabaceae) against *Culex quinquefasciatus* Say (Diptera: Culicidae)

Govindarajan Marimuthu*, Rajeswary Mohan
Division of Vector Biology and Phytochemistry, Department of Zoology, Annamalai University, Annamalainagar–608 002, Tamilnadu, India

Objective: To assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant, *Pithecellobium dulce* (*P. dulce*) against filariasis vector mosquito, *Culex quinquefasciatus* (*Cx. quinquefasciatus*).

Methods: Twenty five early third instar larvae of *Cx. quinquefasciatus* were exposed to various concentrations and were assayed in the laboratory by using the protocol of WHO (2005). The larval mortality was observed after 24 h of treatment. The ovicidal activity was determined against *Cx. quinquefasciatus* mosquito eggs to various concentrations ranging from 100–750 mg/L under the laboratory conditions.

Results: The methanol extract of the leaves and seed of *P. dulce* was the most effective against the larvae with LC50 and LC90 values 164.12 mg/L, 214.29 mg/L, 289.34 mg/L and 410.18 mg/L being observed after 24 h of exposure. The efficacy of methanol was followed by that of the ethyl acetate, chloroform, benzene and hexane extracts. The mean percent hatchability of the egg rafts were observed after 48 h of treatment. About 100% mortality was observed at 500 mg/L for leaf and 750 mg/L for seed methanol extracts of *P. dulce*.

Conclusions: From the results, it can be concluded that the larvicidal and ovicidal effect of *P. dulce* against *Cx. quinquefasciatus* make this plant product promising as an alternative to synthetic insecticide in mosquito control programs.

KEYWORDS
Culex quinquefasciatus, *Pithecellobium dulce*, Larvicidal activity, Ovicidal activity, Leaf and seed
to non–target organisms and their innate biodegradability[2]. In the search for environmentally safe and relatively inexpensive methods for controlling mosquitoes, plant extracts received much interest as potential bioactive agents against mosquito egg and larvae.

Most of the mosquito control programmes target the egg and larval stage in their breeding sites with ovicides and larvicides because the adulticides may only reduce the adult population temporarily[3,4]. Therefore, a more efficient way to reduce mosquito population is to target the eggs and larvae. In the last few years, there was an increase of public concern on the safety of many chemical products that instigated a renewed interest on the use of natural products from plant origin for vector management. New botanical natural products are effective, environment–friendly, easily biodegradable, inexpensive, and readily available in many areas of the world, being no ill effect on non–target organisms and having novel modes of action[5].

Samidurai et al. observed that the leaf extracts of *Pemphis acidula* were evaluated for larvicidal[6], ovicidal and repellent activities against *Cx. quinquefasciatus* and *Aedes aegypti* (*Ae. aegypti*). Govindarajan investigated the larvicidal efficacy of different extracts of *Ficus benghalensis* against *Cx. quinquefasciatus*, *Ae. aegypti* and *Anopheles stephensi* (*An. stephensi*)[7]. The larvicidal activity of *Sidra acuta* was evaluated against 3rd instar larvae of *Anopheles subpictus* and *Culex tritaeniorhynchus*[8]. The larvicidal activity of methanol extracts of *Cassia obtusifolia*, *Cassia tora* and *Vicia tetrasperma* were tested against early fourth stage larvae of *Ae. aegypti* and *Culex pipiens* (*Cx. pipiens*)[9]. The acetone, chloroform, ethyl acetate, hexane and methanol leaf extracts of *Leucas aspera* were studied against the early fourth instar larvae of *Ae. aegypti* and *Cx. quinquefasciatus*[10]. Laboratory evaluation of a phytosteroid compound of mature leaves of Day Jasmine (*Solanum aculeatun*) against larvae of *Cx. quinquefasciatus* (Diptera: Culicidae) and non–target organisms[11]. The ovicidal and repellent activities of methanol leaf extract of *Eratamia coronaria* (*E. coronaria*) and *Caesalpinia pulcherrima* were against *Cx. quinquefasciatus*, *Ae. aegypti* and *An. stephensi*[12].

Sida dulce (P. dulce) (Roxb.) Benth. (Family: Fabaceae) (Common name: Sweet tamarind) were collected from Thanjavur District (Between 9°50’ and 11°25’ of the north latitude; 78°45’ and 70°25’ of the east longitude), Tamil Nadu, India. A voucher specimen is deposited at the herbarium of plant phytochemistry division, Department of Zoology, Annamalai University.

2. Materials and methods

2.1. Collection of plants

Fully developed leaves and seeds of the plant, *P. dulce* (Roxb.) Benth. (Family: Fabaceae) (Common name: Sweet tamarind) were collected from Thanjavur District (Between 9°50’ and 11°25’ of the north latitude; 78°45’ and 70°25’ of the east longitude), Tamil Nadu, India. A voucher specimen is deposited at the herbarium of plant phytochemistry division, Department of Zoology, Annamalai University.

2.2. Extraction

The leaves and seeds were washed with tap water, shade–dried, and finely ground. The finely ground plant leaf and seed powder (1.0 kg/solvent) was loaded in Soxhlet apparatus and was extracted with five different solvents, namely, hexane, benzene, chloroform, ethyl acetate and methanol, individually. The solvents from the extracts were removed using a rotary vacuum evaporator to collect the crude residue of 7.8, 8.6, 9.1, 9.7, 10.2% and 7.2, 7.9, 8.2, 8.8, 9.7%, respectively. Standard stock solutions were prepared at 1% by dissolving the residues in ethanol. From this stock solution, different concentrations were prepared and these solutions were used for larvicidal and ovicidal bioassays.

2.3. Larvicidal bioassay

The larvicidal activity of the plant crude extracts was evaluated as per the method recommended by World Health Organization[14]. Batches of 25 third instar larvae were transferred to a small disposable test cups, each containing 200 mL of water. The appropriate volume of dilution was added to 200 mL water in the cups to obtain the desired target dosage, starting with the lowest concentration. Four replicates were set up for each concentration, and an equal number of controls were set up simultaneously using tap water. To this, 1 mL of ethanol was added. The LC50 value was calculated after 24 h by probit analysis[15].

2.4. Ovicidal activity

For ovicidal activity, slightly modified method of Su and Mulla was performed[16]. The eggs of *Cx. quinquefasciatus* were collected from vector control laboratory, Annamalai University. The leaf and seed extracts diluted in the ethanol to achieve various concentrations ranging from 100 to 750 mg/L. Eggs of these mosquito species (100) were exposed to each concentration of leaf and seed extracts. After treatment, the
eggs from each concentration were individually transferred to distilled water cups for hatching assessment after counting the eggs under microscope. Each experiment was replicated six times along with appropriate control. The hatch rates were assessed 48 h post treatment by following formula.

\[
\% \text{ of egg hatchability} = \frac{\text{No. of hatched larvae}}{\text{Total No. of eggs}} \times 100
\]

2.5. Statistical analysis

The average mortality data were subjected to probit analysis for calculating LC50, LC90, and other statistics at 95% confidence limits of upper confidence limit (UCL) and lower confidence limit (LCL), and Chi-square values were calculated using the SPSS 12.0 (Statistical Package for Social Sciences) software. Results with \(P<0.05 \) were considered to be statistically significant.

3. Results

The larvicidal activity of leaf and seed extract of \(P. \) dulce against filariasis vector mosquito, \(Cx. \) quinquefasciatus are presented in Table 1. The leaf extracts were found to be more effective than the seed extracts. The LC50 values of leaf of \(P. \) dulce, with five different solvents viz., hexane, benzene, chloroform, ethyl acetate and methanol against \(Cx. \) quinquefasciatus were 197.23, 184.96, 175.38, 170.66 and 164.12 mg/L respectively and the LC50 values were 348.34, 331.42, 309.07, 301.91 and 289.34 mg/L respectively. The 95% confidence limits of upper confidence limit (UCL) and lower confidence limit (LCL) were ranged from 300.21 to 244.86 mg/L and 159.70 to 126.71 mg/L and 234.51 to 200.35 mg/L respectively. The LCL, UCL LC90 values were 197.23, 184.96, 175.38, 170.66 and 164.12 mg/L respectively and the LC90 values were 348.34, 331.42, 309.07, 301.91 and 289.34 mg/L respectively. The 95% confidence limits \(\chi^2 \) values were 197.23, 184.96, 175.38, 170.66 and 164.12 mg/L respectively and the LC90 values were 348.34, 331.42, 309.07, 301.91 and 289.34 mg/L respectively. The 95% confidence limits of upper confidence limit (UCL) and lower confidence limit (LCL), and Chi-square values were calculated using the SPSS 12.0 (Statistical Package for Social Sciences) software. Results with \(P<0.05 \) were considered to be statistically significant.

![Table 1](image1)

Table 1: Larvicidal activity of different solvent leaf and seed extracts of \(P. \) dulce against \(Cx. \) quinquefasciatus.

<table>
<thead>
<tr>
<th>Solvents</th>
<th>LC50 (LCL–UCL) (mg/L)</th>
<th>LC90 (LCL–UCL) (mg/L)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>164.12 (126.71–200.35)</td>
<td>214.29 (135.07–285.46)</td>
<td>289.34 (244.86–372.14)</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>170.66 (131.79–207.95)</td>
<td>240.37 (166.31–310.90)</td>
<td>301.91 (256.08–385.74)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>175.38 (134.51–214.99)</td>
<td>274.70 (200.77–354.32)</td>
<td>300.07 (250.78–400.32)</td>
</tr>
<tr>
<td>Benzene</td>
<td>184.96 (137.13–230.79)</td>
<td>303.22 (241.97–474.72)</td>
<td>331.42 (276.37–440.60)</td>
</tr>
<tr>
<td>Hexane</td>
<td>197.23 (159.70–234.51)</td>
<td>322.80 (268.09–389.37)</td>
<td>348.34 (300.21–431.37)</td>
</tr>
</tbody>
</table>

*: Significant at \(P<0.05 \); L: Leaf; S: Seed; LCL: Lower confidence limits; UCL: Upper confidence limits; \(\chi^2 \): Chi-square.

4. Discussion

Plants are rich sources of bioactive compounds that can be used to develop environmentally safe vector and pest managing agents. Phytoextracts are emerging as potential mosquito control agents, with low-cost, easy-to-administer, and risk-free properties. Our result showed that the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts of leaf and seed of \(P. \) dulce had significant larvicidal and ovicidal properties against filariasis vector mosquito, \(Cx. \) quinquefasciatus, with the LC50 values less than 200 mg/L for leaf and 350 mg/L for seed. When the larvae were treated with different solvent extracts, the larvae were at first restless then they were sluggish and coiled and finally death occurred. Compared with other results, Mathivanan et al. determined that the LC50 and LC90 values of crude methanol extract of leaves of \(E. \) coronaria on \(Cx. \) quinquefasciatus, \(Ae. \) aegypti, and \(An. \) stephensi larvae in 24
h were 72.41, 65.67, and 62.08 and 136.55, 127.24, and 120.86 mg/L, respectively[17]. The larvicidal, ovicidal, and repellent activities of crude benzene and ethyl acetate extracts of leaf of *E. coronaria* and *Caesalpinia pulcherrima* were assayed for their toxicity against three important vector mosquitoes, *viz.*, *A. stephensi*, *Ae. aegypti*, and *Cx. quinquefasciatus*. All extracts showed moderate larvicidal effects. However, the highest larval mortality was found in benzene extract of *E. coronaria* against the larvae of *A. stephensi*, *Ae. aegypti*, and *Cx. quinquefasciatus* with the LC$_{50}$ and LC$_{90}$ values 79.08, 89.59, and 96.15 mg/L and 150.47, 166.04, and 174.10 mg/L, respectively[5].

The LC$_{50}$ value of methanol extract of the green berries of *Solanum villosum* on third instar larvae of *Ae. aegypti* was 11.67 mg/L[18]. The bio-efficacy of *Aloe vera* leaf extract and bacterial insecticide, *Bacillus sphaericus* larvicidal activity was assessed against the first to fourth instars larvae of *Ae. aegypti*, under the laboratory conditions. The LC$_{50}$ of *Aloe vera* against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 mg/L and the LC$_{50}$ 442.98, 518.86, 563.18 and 612.96 mg/L, respectively[19]. Patil *et al.* evaluated larvicidal activity of extracts of medicinal plants *Plumbago zeylanica* and *Cestrum nocturnum* against *Ae. aegypti*[20]; the LC$_{50}$ values of both the plants were less than 50 mg/L. The larvicidal stability of the extracts at five constant temperatures (19 °C, 22 °C, 25 °C, 28 °C and 31 °C) evaluated against fourth instars larvae revealed that toxicity of both plant extracts increased with increase in temperature. Larvicidal activity of crude extract of *Sidra acuta* against *Cx. quinquefasciatus*, *Ae. aegypti*, and *A. stephensi* with LC$_{50}$ values ranging from 38 to 48 mg/L[18]; Mohan and Ramaswamy evaluated the efficacy of *Ageratina adenophora* against *Culex* and found that it showed an LC$_{50}$ of 227.19 mg/L after 24 h of treatment[22].

The larvicidal activity of crude petroleum ether, ethyl acetate, and methanol extracts of the whole plants of *Phryma leptostachya* was assayed for its toxicity against the early fourth instar larvae of *Cx. pipiens pallens*. Among three solvent extracts from *Phryma leptostachya*, the petroleum ether extract exhibited the best larvicidal activity. The corresponding LC$_{50}$ values of petroleum ether, ethyl acetate, and methanol extracts were 3.23, 5.23, and 61.86 mg/L against the early fourth instar larvae of *Cx. pipiens pallens*[23]. Thanigaivel *et al.* reported that the larvicidal activity of methanolic fractions from *Adhatoda vasica* leaf extracts were investigated against the *Bancroftian filariasis* vector *Cx. quinquefasciatus* and dengue vector *Ae. aegypti*[24]. The results indicated that the mortality rates were high at 100, 150, 200 and 250 mg/L of methanol extract of fractions III with R$_{0}$ value 0.67 and methanol extract of fraction V with R$_{0}$ value 0.64 of *Adhatoda vasica* against all the larval instars of *Cx. quinquefasciatus* and *Ae. aegypti*. The LC$_{50}$ and LC$_{90}$ values were 106.13 and 180.6 mg/L for fraction III, 110.6 and 170 mg/L for fraction V and 157.5 and 215.5 mg/L for fraction III and 120 and 243.5 mg/L for the fraction V, respectively.

Ethanol fractionate of *Eichhornia crassipes* showed the highest larvicidal and pupicidal activity against *Cx. quinquefasciatus* compared to other solvent extracts and fractionates with LC$_{50}$ 71.43, 94.68, 120.42, 152.15 and 173.35 mg/L for I, II, III, IV and pupae, respectively[25]. These results clearly indicate that the plant-based insecticides, which are less expensive than synthetic insecticides, exert high larvicidal and ovicidal effect. Therefore, the results of this study indicate that the extract of *P. dulce* may be effectively used for the control of mosquito larvae and eggs in public health operations. In conclusions, this study demonstrated that the different solvent extracts of *P. dulce* had excellent mosquito larvicidal and ovicidal activities against *Cx. quinquefasciatus*. Thus, the methanolic extract of *P. dulce* has potential to be developed as natural larvicidal and ovicidal agents. However, this plant is subject of further evaluation to elucidate the constituents responsible for observed activities and further investigations for the insecticidal mode of action. Effects on non-target organisms and field evaluation are needed. Moreover, these results could be useful in the research for selecting newer, more selective, biodegradable and natural larvicidal and ovicidal compounds.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors are grateful to the University Grants Commission (UGC) [F. No. 39–646/2010 (SBr)], New Delhi, India for providing financial assistance for the present investigation and thankful to the Professor and Head, Department of Zoology, Annamalai University for the laboratory facilities provided. We acknowledge the staff members of the VCRC (ICMR), Pondicherry for their cooperation.

Comments

Background

Mosquitoes are well known for their public health importance since they cause major health problems and diseases. Indiscriminate use of several mosquitocidal agents caused various side effects. Thus, there is a need to develop alternative strategies to control vector mosquitoes.

Research frontiers

Cx. quinquefasciatus, the major rural filarial vector was shown not much interest by many other scientists in Southern India, has been taken into account. Plant extracts of *P. dulce* in controlling mosquito larvae and egg is interesting.

Related reports

Numbers of scientists have worked on the plant extracts in controlling mosquito larva (Sivakumar *et al.* 2013; Samidurai *et al.* 2009). In this present investigation, they have followed standard protocols to assess the mosquito adulticidal action of selected plant extracts.

Innovations and breakthroughs

Control of rural filarial vector is an important aspect. Using plant extracts as a natural enemy of mosquitoes without causing any percentage of destruction to environment and
combining plants is very much important to the society.

Applications

The exploration of research leading to their possible utilization certainly paves the way for search of new phytochemical compounds and their proper role in the near future as eco-friendly natural pesticides.

Peer review

The present resurgence of these diseases is due to the higher number of breeding places in today’s throwaway society. Further the indiscriminate use of synthetic insecticides is creating multifarious problems like environmental pollution, insecticide resistance and toxic hazards to humans. The secondary metabolites synthesized by plant extracts demonstrate a broad spectrum of bioactivity against mosquitoes.

References

