Prevalence of *Helicobacter pylori* cagA genotype among dyspeptic patients in Southern Thailand

Sueptrakool Wisessombat¹*, Chatruthai Meethai²

¹School of Allied Health Sciences and Public Health, Walailak University, Tha Sala, Nakhon Si Thammarat Province, Thailand

²Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla Province, Thailand

ABSTRACT

Objective: To investigate the prevalence of *Helicobacter pylori* (*H. pylori*) infection in dyspepsia patients and its relation to virulence factor cagA gene.

Methods: In total, 110 gastric biopsies from dyspeptic patients were comparatively studied using rapid urease test and multiplex polymerase chain reaction (PCR).

Results: Multiplex PCR detected three genes of 16S rRNA, cagA, and ureC. *H. pylori* was detected in 14 gastric biopsies (13%). Significantly higher numbers of females were infected. Furthermore, cagA gene was found in all *H. pylori*-positive specimens. In addition, the result indicated that the multiplex PCR with annealing temperature at 57°C was able to effectively amplify specific products.

Conclusions: The results confirmed high prevalence of cagA gene in *H. pylori* among dyspeptic patients in Southern Thailand.

KEYWORDS

Helicobacter pylori, Multiplex polymerase chain reaction, Dyspepsia, cagA gene

1. Introduction

Helicobacter pylori (*H. pylori*), a Gram-negative microaerobic bacterium, is associated with human gastritis, gastric ulcer and gastric cancer[1]. Cytotoxin associated gene cagA is one of the most studied virulence factors of *H. pylori*. cagA has been proposed as a marker for a genomic pathogenicity island[2]. *H. pylori* cagA-positive strains have been observed to be more virulent than the *H. pylori* cagA-negative strains. The cagA-positive strain increases the risk of development of atrophic gastritis, mucosal inflammation, and adenocarcinoma[3].

Histology has been considered to be the gold standard for detection of *H. pylori*. However, the detection of *H. pylori* relies upon a number of gastric biopsies, staining methods, and the level of experience of the examining
pathologist[4]. Molecular methods based on polymerase chain reaction (PCR) amplification are rapid, specific and sensitive. A number of PCR-based methods have been reported for the detection of Helicobacter[5-7]. In Southern Thailand, the epidemiological studies on prevalence of

\textit{H. pylori} infection are very few.

The objective of the present study was to investigate the prevalence of \textit{H. pylori} infection among dyspeptic patients in Southern Thailand. We also established a multiplex PCR for the identification of \textit{H. pylori}. In addition, \textit{cagA} gene-based multiplex PCR can simultaneously detect the presence of \textit{cagA} gene which is responsible for pathogenesis of \textit{H. pylori} infection.

\section{Materials and methods}

\subsection{Bacterial strains and culture conditions}

Reference strains including \textit{H. pylori} NCTC 11637 and \textit{H. pylori} NCTC 11638 were used for development of a multiplex PCR. Helicobacter species were cultured on Brucella blood agar (BBL, USA) with 10\% defibrinated horse blood (Oxoid, UK). Plates were incubated at 37 °C for 48 h under microaerobic atmosphere using gas pack system (Oxoid).

\subsection{Gastric biopsies}

Gastric biopsies were collected from Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Thailand. A total of 110 dyspeptic patients undergoing upper endoscopy were biopsied and tested for \textit{H. pylori} infection by a Campylobacter–like organism (CLO) test (Kimberly–Clark, USA) and multiplex PCR. The CLO test was performed according to the manufacturer’s instructions, and the results were interpreted after 24 h.

\subsection{Multiplex PCR}

Bacterial DNA was extracted and purified directly from biopsy specimens by QIAamp DNA Mini Kit (QIAamp, USA). The identification of \textit{H. pylori} confirmed specific primers. In this study, a multiplex PCR was designed to detect three genes of 16S rRNA, \textit{cagA} encoding for virulence factor cytotoxin associated gene A, and \textit{ureC} for housekeeping urease gene C (Table 1). PCR was performed in a total reaction volume of 25 mL containing 1× TopTaq Master (QIAamp), 1.5 mmol/L MgCl$_2$, 200 mmol/L deoxynucleotide triphosphates, 1.25 IU Taq polymerase, 20 μmol 16S rRNA primers for \textit{H. pylori}, 15 μmol each of \textit{cagA} primers and \textit{ureC} primers for \textit{H. pylori}. Amplification consisted of initial denaturation at 94 °C for 4 min, followed by amplification at 94 °C for 30 seconds, primers annealing at 50–60 °C for 30 seconds, and extension at 72 °C for 30 seconds. The samples were amplified for 40 cycles, with a final extension step at 72 °C for 5 min. PCR cycles were carried out in PTC–100, Peltier Thermal Cycler (Pegasus Scientific, USA). About 2 μL amplified products were analysed by 2% agarose (Gibco–BRL Life Technologies, USA) gel electrophoresis in Tris–Acetate–EDTA buffer at 100 V for 35 min. PCR products were visualized after ethidium bromide staining.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|}
\hline
\textbf{Target} & \textbf{Primer sequences} & \textbf{Annealing temperature} & \textbf{Amplicon size (base pair)} & \textbf{References} \\
\hline
\textbf{16S} & F 5’ TAA GAG ATU AGG CTA TAT GTC C 3’ & 56 & 534 & [22] \\
\textbf{rRNA} & R 5’ TCC CAG CAC TTA AGG GCA AT 3’ & 59 & 400 & [23] \\
\textbf{cagA} & F 5’ AAT ACA CCA AGG CCG CCA AG 3’ & 57 & 294 & [24] \\
\textbf{ureC} & R 5’ TTG TCG CCGATTGCTGCAGCA A 3’ & 39 & 26 & [22] \\
\hline
\end{tabular}
\caption{Primer sequences used in this study.}
\end{table}

\subsection{Statistical analysis}

Data were subjected to analysis of invariance. Determination of the prevalence of \textit{H. pylori} infection in relation to gender and age were carried out by Fisher’s exact test (2-tailed test). Statistical analysis was performed using the Statistical Package for Social Sciences package version 12.0 (SPSS, USA).

\section{Results}

In total, in 110 dyspeptic patients 56 were female and 54 were male. \textit{H. pylori} infected patients were evaluated for the relation of gender and age as shown in Table 2.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
\textbf{Gender} & \textbf{Age (years old)} & \textbf{Total} & \textbf{H. pylori positive (\%)} \\
\hline
\textbf{Female} & <20 & 2 & 0 \\
& 21–40 & 3 & 0 \\
& 41–60 & 25 & 3 (12\%) \\
& >60 & 26 & 7 (27\%) \\
& Total & 56 & 10 (18\%) \\
\hline
\textbf{Male} & <20 & 2 & 0 \\
& 21–40 & 2 & 0 \\
& 41–60 & 22 & 2 (9\%) \\
& >60 & 28 & 2 (7\%) \\
& Total & 54 & 4 (7\%) \\
\hline
\end{tabular}
\caption{H. pylori infection rates in relation to gender and age.}
\end{table}
The results demonstrated that *H. pylori* infection rates were significantly higher (*P*<0.05) in female aged over 60 years.

The presence of *H. pylori* in the gastric biopsies was detected by CLO test and PCR. The results showed that *H. pylori* were positive in 14 gastric biopsies (13%). cagA gene was detected in all *H. pylori*-infected dyspeptic patients. Moreover, the optimal condition of the multiplex PCR was carried out with a single tube method by incorporating all specific primers. The combination of 16S rRNA, cagA, and ureC primers were able to be detected at 57 °C annealing temperatures (data not shown).

4. Discussion

It has been shown that *H. pylori* infection rate in dyspeptic patients was 13%. Nevertheless, the prevalence of *H. pylori* cagA genotype was 100%. Likewise, the positive rate for the cagA gene in *H. pylori* of dyspeptic patients was 94% in Northeast Thailand[8]. Whereas, it was reported that the prevalence of cagA gene was found to be 60%–70% in Western countries[9].

In Thailand, *H. pylori* infection rate was 34.1%[10]. Moreover, 48% of dyspeptic patients were infected with *H. pylori*[11–13]. Similarly, the prevalence of *H. pylori* infection changes considerably with age[14,15].

The *H. pylori* cagA genotype strains are associated with gastric carcinogenesis by increasing interleukin 8 secretion, NF-κB activation, and stimulation of cell proliferation[2,16,17]. The prevalence of gastric cancer in Thailand was reported to be lower than that in other South-East Asia countries even the prevalence of *H. pylori* infection was higher[18]. In Thailand, the prevalence of gastric cancer was 1.5%, while, it was 3.3% in Malaysia[19]. Furthermore, the Western type cagA was detected to be more frequently than the East Asian type in Thai dyspeptic patients. It was also found significantly more common in patients with a gastric ulcer but was not significant in gastric cancer[20]. Recent study have revealed that the variation of Western type cagA gene may be involved in the development of diseases[21].

In conclusion, these observations indicated that the cagA gene is an important virulence factor for *H. pylori*-infected dyspepsia patients. In addition, our multiplex PCR has allowed simultaneous amplification of *H. pylori* virulent genes direct from biopsies.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

This work was supported by Prince of Songkla University, Research Development Fund, Fiscal Year 2011–2012. We also thank Faculty of Medical Technology, Prince of Songkla University for the use of their lab facilities.

Comments

Background

H. pylori is a Gram-negative bacterium causing human gastritis, gastric ulcer and gastric cancer. Cytotoxin associated gene A is one of the most studied virulence factors of *H. pylori*. *H. pylori* cagA–positive strains have been observed to be more virulent than the *H. pylori* cagA–negative strains. Diagnosis of *H. pylori* cagA genotype infections can be performed by PCR.

Research frontiers

This study was performed in order to determine the prevalence of *H. pylori* infection among dyspeptic patients in Southern Thailand. Furthermore, also this study established a new multiplex PCR for the identification of *H. pylori* using cagA gene–based PCR.

Related reports

The manuscript discussed the prevalence of *H. pylori* infections from the United States and Southeast Asia. To establish a new multiplex PCR, the gastric biopsies from dyspeptic patients were comparatively studied using CLO test and multiplex PCR.

Innovations and breakthroughs

This study indicated that the multiplex PCR with annealing temperature at 57 °C was able to effectively amplifiy specific PCR products. Moreover, the cagA gene–based PCR has allowed simultaneous directly detection of virulent genes from gastric biopsies.

Applications

It may be significant to know the distribution of cagA
gene in dyspeptic patients. The results of the present study confirmed the high prevalence of cagA gene in *H. pylori* among dyspeptic patients in Southern Thailand, especially in female aged over 60 years.

Peer review

This article is interesting and revealed that in Southern Thailand, the prevalence of cagA gene in *H. pylori* was found significantly high in female.

References

