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Effects of Structural Damage on Dynamic Behavior 
at Sandwich Composite Beams - Part I-Theoretical 
Approach 

This paper series presents an analysis regarding the dynamics of sand-
wich composite beams, embedded at one end, in order to highlight the 
effect of geometrical and material discontinuities upon the natural fre-
quencies. In first part (Part I), analysis was performed with Euler-
Bernoulli analytical method for determining the vibration modes and in 
second part (Part II), analysis was performed with numerical simulation 
in SolidWorks software for a five-layer composite. In the last section of 
the paper, an example is shown regarding how to interpret the ob-
tained results. 
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1. Introduction  

Periodic inspection and control of the engineering structures are imperatively 
needed in terms of the real-time fault detection and thus ensure safety use of the 
structure.  

The early identification of structural damage during the mechanical structure 
operation, allows well planned maintenance with important impact on reducing 
operating costs, or can justify replacing the structure, in order to avoid accidents 
that can have tragic consequences for individuals and failures, which can cause 
significant financial and material losses [4], [5].  

In this work is presented the studies on beam-type composite structures, 
undertaken to establish the relevance of cross faults influence on the dynamic be-
havior of the beam.          
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2.  The damage effects of isotropic materials beams 

The structural damage influences the dynamic behavior of structures by 
changing the mechanical and the dynamical characteristics, such as modal shapes, 
natural frequencies and the degree of damping, flexibility or stiffness. On these 
principles are based the global methods of fault detection.  

Into the literature, the methods most commonly presented and considered 
in industrial applications, and they are those based on the change in frequency [1], 
[2] and [3]. 

They can be divided in their turn into two categories: methods that allow 
only fault detection, and advanced methods for localization and quantification of 
the faults. Composite materials are composed of two or more structure distinct 
identified constituents, with physical and / or mechanical different properties. In 
contrast to the natural materials with properties well known, the composites are 
developed to meet specific needs, enabling a new approach of the structural de-
sign. 

 Laminated structures are a special class among the composites, which are 
manufactured by attaching the thin sides on the lightweight core, with high 
enough thickness and rigidity (Figure 1.a. three-layer beam and Figure 1.b. five-
layer beam).  

 
 

 
 

a) 
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b) 

Figure 1. Laminated structures: a) three-layer beam and b) five-layer beam 
 
 
The faces of laminated structure are usually made of steel or aluminum hav-

ing a core of low density material, such as foam, PVC, PTFE. The spatial distribu-
tion of the constituents gives the desired mechanical and physical properties 
(sometimes chemical properties). This construction provides to the composite lay-
ers a high bending stiffness, in relation to weight [7], [8]. 

The natural frequency of the isotropic materials beams can be determined 
by the relation (1):  
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where fn is the proper frequency of module n (n = 1, 2, 3, ...), Lnα is the wave 

number of the module n, which depends on the shape conditions, E is the longitu-
dinal elastic modulus, Iz is the moment of inertia regarding the weak axis, ρ is the 
density of material by which is made the beam, A is the cross-sectional area and L 
is the length of the beam.  

For rectangular sections of beam, can obviously have: 
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if the sides of the cross-sectional are width B and height H. 
For composites, the relation (1) may be applied with the condition of use an 

appropriate form of rigidity EI. This can be determined for each one, and then can 
be composed for the whole section, using Steiner's formula for parallel axes. In 
that, the interest is to have high rigidity and low weight, the outer faces have to be 
by metal and the core / cores by lightweight material; therefore, it is suggested an 
odd number of layers. 

Thus, in this study the two types of materials (of beams) are considered, a 
5-layers one and another of 3 layers, both with the overall height of 5 mm, defined 
as follows: 

• the 5 layer composite has three layers of steel placed outside and in 
the middle (the thickness of the sOL=s1,3,5=1 mm) and two layers of 
PVC (SPVC with the same thickness sPVC=s2,4=1 mm) sandwiched 
between steel layers;  

 
• the composition of the three layers is similar to that with 5-layers 

one, but the central layer of the steel is replaced with the PVC. 
This makes the metallic core thickness SPVC=S3=3 mm, as shown in 
Figure 2. 

 

 
Figure 2. Section of the two analyzed composites 

 
 For the five-layer composite, the rigidity EI is computed as follows: 
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 - for layer 2: 
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 - for layer 3: 
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where, d1 is the distance from the gravity center of layer 1 to the neutral axis and 
the distance d2 takes from the gravity center of layer 2 to the neutral axis.  

Since, all layers have the thickness s, and the distance d1=d2=2s, and the 
structure is symmetric about the Oz-axis (EI1=EI5 şi EI2=EI4), it can be write: 
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 Similarly, the stiffness of the three layers composite can be determinate, as: 
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On the other hand, into the frequency relation appears the composite 

structure weight, which can be determined by the relationship: 
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where, p is the number of steel layers and q is the number of PVC layers. For the 
five layer composite, the beam mass will be: 
 

BsLBsLBsLm PVCOLPVCOLcomp )23(23)5( ρρρρ +=+=                     (7) 

 
and for the three layers composite: 
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By introducing the expressions (4) and (7), respective (5) and (8) into the 

equation (1), the frequency of the considered composite beam may be 
determined.  
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The following formula determines the frequency for the 5-layers composite: 
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It should be note that the modal shapes are similar with those determined 

for isotropic materials, as long as the ratio stiffness-mass does not exceed a critical 
value. At the exceeding of this value, the Euler-Bernoulli model is no longer 
adequate, and it is necessary to use a more complex model, such as Shear and 
Timoshenko [4-5]. 

In order to illustrate the calculation of frequencies, two beams as described 
above, in which the steel is elastic modulus EOL=2,06�1011 N/m2 and density 
ρOL=7850 kg/m

3, and the rigid PVC has longitudinal modulus EPVC=2,41�10
9 N/m2 

and density ρPVC=1300 kg/m
3. 

Each layer has a length L=1000 mm, and the rectangular cross-section 
implies the dimensions: B=20 mm, height H=5 mm. 
 The results related to the stiffness and the mass, are shown in Table 1 
together with the results achieved for the same beam geometry, made entirely of 
steel. 

           Table 1.  Values for the stiffness and the mass 

OLEI  PVCEI  totalEI  OLm  PVCm  totalm   
Features 

Beam type 
[N/m2] [N/m2] [N/m2] [kg] [kg] [kg] 

Whole steel 42,7 - 42,7 0,785 - 0,785 

5 layers 
composite 

33,8 10,4 33,9 0,471 0,052 0,523 

 
3 layers 
composite 

33,5 10,7 33,6 0,314 0,078 0,392 

 
Analyzing the data from Table 1, it is noted that the stiffness of composite 

structures is approach, as order of the magnitude, to the steel beam, but the mass 
decreases significantly when introducing the layers of PVC. 

 Also, it can be note that the central layer brings an insignificant contribution 
to the rigidity of the structure, which recommends the use of lightweight materials 
in the area. Table 2 shows the value of the ratio between the frequencies of the 
three types of structures analyzed. 
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Table 2. Values of the ratio between frequencies 
 5 layers composite 3 layers composite 3 layers composite 
 Whole steel Whole steel 5 layers composite 

Frequency  
ratio 

1,092 1,255 1,15 

 
When designing structures, it has to bear in mind that the proper 

frequencies increase with the increasing of light weight material, which can be a 
disadvantage, in some cases. 

4. Conclusion  

 The aim of this script was to analyze the relations performed to calculate the 
natural frequency of isotropic materials, and it determines that they can be ex-
panded in the case of sandwich beams, if accurate determination of the structure 
stiffness and mass is provided. Therefore, Timoshenko and Shear models for the 
rigid structures are appropriate for the studied beams, as well.  
 Accomplished studies have also shown that, due to the defect, the frequency 
of sandwich beam is changing and becomes higher than the steel beam. Thus, the 
global methods for fault detection are also successfully applicable in the case of 
sandwich beams. 
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