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Abstract

We study the qualitative behavior of a predator-prey model, where the carrying
capacity of the predators environment is proportional to the number of prey. We
investigate the boundedness character, steady-states, local asymptotic stability of
equilibrium points, and global behavior of the unique positive equilibrium point of
a discrete predator-prey model given by

xn+1 =
αxn − βxnyn

1 + γxn
, yn+1 =

δxnyn

xn + ηyn
,

where parameters α, β, γ, δ, η and initial conditions are positive real numbers. More-
over, the rate of convergence of positive solutions is also discussed. Some numerical
examples are given to verify our theoretical results.
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1 Introduction

Leslie introduced the following predator-prey model where the ”carrying capacity” of the

predators environment is proportional to the number of prey:

dH

dt
= (r1 − a1P − b1H)H, (1)

dP

dt
=

(

r2 − a2
P

H

)

P,

where H , P represent the prey and predator density, respectively and r1, a1, b1, r2, a2

are positive constants. The parameters r1 and r2 are the intrinsic growth rates of the

prey and the predator, respectively. The value r1/b1 denotes the carrying capacity of the

prey and r2H/a2 takes on the role of a prey-dependent carrying capacity for the predator.

There have been many important and interesting results about system (1), such as the

global stability, permanence, periodic solutions, almost periodic solutions and so on [1].

It is pointed out in [2] that discrete-time models are more appropriate than continuous

ones when the populations have non-overlapping generations. Furthermore, discrete-time

systems can also provide efficient computational models of continuous for numerical simu-

lations. In the present work, applying the forward Euler’s method followed by a nonstan-

dard difference scheme to system (1), we obtain the discrete-time predator-prey system

as follows

xn+1 =
αxn − βxnyn

1 + γxn
, yn+1 =

δxnyn
xn + ηyn

, (2)

where parameters α, β, γ, δ, η and initial conditions are positive real numbers. Here, it

should be noted that in nonstandard difference scheme, we have used such a transforma-

tion that equilibrium points in both cases are conserved. More precisely, our aim is to

investigate boundedness character, local asymptotic stability, global asymptotic stability

of unique positive equilibrium point, and the rate of convergence of positive solutions of

the system (2). For basic theory of difference equations and their applications, we refer to

[3, 5, 6, 7, 8, 9]. In [10, 11, 12, 13, 14, 15, 16, 17] some qualitative behavior of difference

equations is discussed.

2 Boundedness

The following theorem shows that every positive solution of the system (2) is bounded.

Theorem 1. Every positive solution {(xn, yn)} of the system (2) is bounded.
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Proof. Assume that x0 ≥ 0, y0 ≥ 0, then any arbitrary solution {(xn, yn)} of (2) is

positive if and only if 0 < yn < α
β
for all n = 1, 2, . . .. Let {(xn, yn)} be an arbitrary

positive solution of (2), then from the system (2) we obtain

xn+1 =
αxn − βxnyn

1 + γxn

≤
αxn

1 + γxn

≤
α

γ
, n = 0, 1, 2, . . . ,

and

yn+1 =
δxnyn

xn + ηyn
=

δyn
1 + η yn

xn

≤
δ

η
xn ≤

αδ

γη
, n = 0, 1, 2, · · · .

Hence, for every positive solution {(xn, yn)} of (2), one has

0 < xn ≤
α

γ
, 0 < yn ≤ min

{

α

β
,
αδ

γη

}

for all n = 1, 2, . . .. This completes the proof.

Theorem 2. Let {(xn, yn)} be a positive solution of the system (2). Then,
[

0, α
γ

]

× [0, B]

is an invariant set for (2), where B = min
{

α
β
, αδ
γη

}

.

Proof. For any positive solution {(xn, yn)} of the system (2) with initial conditions x0 ∈
[

0, α
γ

]

and y0 ∈ [0, B], we have from the system (2)

0 ≤ x1 =
αx0 − βx0y0

1 + γx0

≤
αx0

1 + γx0
≤

α

γ
,

and

0 ≤ y1 =
δx0y0

x0 + ηy0
≤

δx0y0
ηy0

=
δ

η
x0 ≤

αδ

γη
.

Hence, x1 ∈
[

0, α
γ

]

and y1 ∈ [0, B], where B = min
{

α
β
, αδ
γη

}

. Then it follows by induction
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that

0 ≤ xn ≤
α

γ
, 0 ≤ yn ≤ B,

for all n = 1, 2, . . ., where B = min
{

α
β
, αδ
γη

}

.

3 Linearized stability

Let (x̄, ȳ) be an equilibrium point of system (2), then

x̄ =
αx̄− βx̄ȳ

1 + γx̄
, ȳ =

δx̄ȳ

x̄+ ηȳ
.

Hence, P =
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

, Q =
(

α−1
γ
, 0
)

be only two equilibrium points of the

system (2). Then, clearly P =
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

be the unique positive equilibrium

point of the system (2), if α > 1 and δ > 1.

The Jacobian matrix of linearized system of (2) about the fixed point (x̄, ȳ) is given

by

FJ(x̄, ȳ) =

[

α−ȳβ
(1+x̄γ)2

− x̄β
1+x̄γ

δηȳ2

(x̄+ηȳ)2
δx̄2

(x̄+ηȳ)2

]

.

Lemma 1 (Jury condtion). Consider the second-degree polynomial equation

λ2 + pλ+ q = 0, (3)

where p and q are real numbers. Then, the necessary and sufficient condition for both

roots of the Equation (3) to lie inside the open disk |λ| < 1 is

|p| < 1 + q < 2.

Theorem 3. Assume that α > 1 and δ < 1, then the equilibrium point Q =
(

α−1
γ
, 0
)

of

the system (2) is locally asymptotically stable.

Proof. The Jacobian matrix of the linearized system of (2) about the equilibrium point

Q =
(

α−1
γ
, 0
)

is given by

FJ

(

α− 1

γ
, 0

)

=

[

1
α

(1−α)β
αγ

0 δ

]

.
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Then, characteristic polynomial of the Jacobian matrix FJ(Q) about the equilibrium point

Q =
(

α−1
γ
, 0
)

is given by

Υ(λ) = λ2 −

(

1

α
+ δ

)

λ+
δ

α
.

The roots of characteristic polynomial Υ(λ) are

λ1 =
1

α
< 1, λ2 = δ < 1.

Hence, equilibrium point
(

α−1
γ
, 0
)

is locally asymptotically stable, if α > 1 and δ < 1.

Theorem 4. Assume that α > 2 and δ > 1, then unique positive equilibrium point

P =
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

of the system (2) is locally asymptotically stable if and only if

ηγ(αδ − 1) > (α− 2)β(δ − 1)2. (4)

Proof. Assume that α > 1 and δ > 1. Then, characteristic polynomial of the Jacobian

matrix FJ(P ) about the unique equilibrium point P =
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

is given by

Υ(λ) = λ2 −

(

γη(α+ δ) + βδ2 − β

δ(αγη + β(δ − 1))

)

λ+
β(δ − 1)(α(δ − 1)− δ + 2) + γη

δ(αγη + β(δ − 1))
.

Let

p =
γη(α+ δ) + βδ2 − β

δ(αγη + β(δ − 1))
, q =

β(δ − 1)(α(δ − 1)− δ + 2) + γη

δ(αγη + β(δ − 1))
.

Assume that ηγ(αδ − 1) > (α− 2)β(δ − 1)2. Then, one has

|p| =
γη(α + δ) + βδ2 − β

δ(αγη + β(δ − 1))

=
1

δ
+

γη + β(δ − 1)

αγη + β(δ − 1)

< 1 +
β(δ − 1)(α(δ − 1)− δ + 2) + γη

δ(αγη + β(δ − 1))
= 1 + q.

and

1 + q =
β(δ − 1)(α(δ − 1) + 2) + γη(αδ + 1)

δ(αγη + β(δ − 1))

= 2−
γη(αδ − 1)− (α− 2)β(δ − 1)2

δ(αγη + β(δ − 1))
< 2.
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Hence, |p| < 1 + q < 2. It follows from lemma 1 that unique positive equilibrium point

P =
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

of the system (2) is locally asymptotically stable if and only

if ηγ(αδ − 1) > (α− 2)β(δ − 1)2.

4 Global behavior

Theorem 5. Let I = [a, b] and J = [c, d] be real intervals, and let f : I × J → I and

g : I×J → J be continuous functions. Let us consider two-dimensional discrete dynamical

system of the form

xn+1 = f(xn, yn) (5)

yn+1 = g(xn, yn), n = 0, 1, . . . ,

with initial conditions (x0, y0) ∈ I × J . Suppose that following statements are true:

(i) f(x, y) is non-decreasing in x, and non-increasing in y.

(ii) g(x, y) is non-decreasing in both arguments.

(iii) If (m1,M1, m2,M2) ∈ I2 × J2 is a solution of the system

m1 = f(m1,M2), M1 = f(M1, m2)

m2 = g(m1, m2), M2 = g(M1,M2)

such that m1 = M1, and m2 = M2. Then, there exists exactly one equilibrium point (x̄, ȳ)

of the system (5) such that lim
n→∞

(xn, yn) = (x̄, ȳ).

Theorem 6. Assume that γη − βδ 6= 0. Then, the unique positive equilibrium point

P =
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

of the system (2) is a global attractor.

Proof. Let f(x, y) = αx−βxy
1+γx

, and g(x, y) = δxy
x+ηy

. Then, it is easy to see that f(x, y) is

non-decreasing in x for every fixed y ∈ [0, α
β
] and non-increasing in y. Moreover, g(x, y)

is non-decreasing in both x and y. Let (m1,M1, m2,M2) be a solution of the system

m1 = f(m1,M2), M1 = f(M1, m2)

m2 = g(m1, m2), M2 = g(M1,M2)
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Then, one has

m1 =
αm1 − βm1M2

1 + γm1
, M1 =

αM1 − βM1m2

1 + γM1
, (6)

and

m2 =
δm1m2

1 + ηm2
, M2 =

δM1M2

1 + ηM2
. (7)

From (6), one has

1 + γm1 = α− βM2, 1 + γM1 = α− βm2. (8)

Similarly, from (7) we obtain

1 + ηm2 = δm1, 1 + ηM2 = δM1. (9)

On subtracting (8), we have γ(M1 − m1) = β(M2 − m2), and subtracting (9), one has

η(M2 − m2) = δ(M1 − m1). Then, it follows that (γη − βδ) (M1 − m1) = 0. Hence,

M1 = m1 and similarly one has M2 = m2. Hence, from theorem 5 the equilibrium point
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

of the system (2) is a global attractor.

Lemma 2. Assume that α > 2, δ > 1, γη − βδ 6= 0 and ηγ(αδ − 1) > (α− 2)β(δ − 1)2.

Then, the unique positive equilibrium point
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

of the system (2) is

globally asymptotically stable.

Proof. The proof follows from theorem 4, and theorem 6.

5 Rate of convergence

In this section we will determine the rate of convergence of a solution that converges to

the unique positive equilibrium point of the system (2).

The following result gives the rate of convergence of solutions of a system of difference

equations

Xn+1 = (A+B(n))Xn, (10)

where Xn is an m-dimensional vector, A ∈ Cm×m is a constant matrix, and B : Z+ →
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Cm×m is a matrix function satisfying

‖B(n)‖ → 0 (11)

as n → ∞, where ‖ · ‖ denotes any matrix norm which is associated with the vector

norm

‖(x, y)‖ =
√

x2 + y2

Proposition 1. (Perron’s Theorem)[18] Suppose that condition (11) holds. If Xn is a

solution of (10), then either Xn = 0 for all large n or

ρ = lim
n→∞

(‖Xn‖)
1/n (12)

exists and is equal to the modulus of one the eigenvalues of matrix A.

Proposition 2. [18] Suppose that condition (11) holds. If Xn is a solution of (10), then

either Xn = 0 for all large n or

ρ = lim
n→∞

‖Xn+1‖

‖Xn‖
(13)

exists and is equal to the modulus of one the eigenvalues of matrix A.

Let {(xn, yn)} be any solution of the system (2) such that lim
n→∞

xn = x̄, and lim
n→∞

yn = ȳ,

where (x̄, ȳ) =
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

. To find the error terms, one has from the system

(2)

xn+1 − x̄ =
αxn − βxnyn

1 + γxn
−

αx̄− βx̄ȳ

1 + γx̄

=
(α− βyn)

(1 + γxn)(1 + γx̄)
(xn − x̄)−

βx̄

1 + γx̄
(yn − ȳ),

and

yn+1 − ȳ =
δxnyn

xn + ηyn
−

δx̄ȳ

x̄+ ηȳ

=
δηȳyn

(xn + ηyn)(x̄+ ηȳ)
(xn − x̄) +

δx̄xn

(xn + ηyn)(x̄+ ηȳ)
(yn − ȳ) .
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Let e1n = xn − x̄, and e2n = yn − ȳ, then one has

e1n+1 = ane
1
n + bne

2
n,

and

e2n+1 = cne
1
n + dne

2
n,

where

an =
(α− βyn)

(1 + γxn)(1 + γx̄)
, bn = −

βx̄

1 + γx̄
,

cn =
δηȳyn

(xn + ηyn)(x̄+ ηȳ)
, dn =

δx̄xn

(xn + ηyn)(x̄+ ηȳ)
.

Moreover,

lim
n→∞

an =
α− ȳβ

(1 + x̄γ)2
, lim

n→∞

bn = −
x̄β

1 + x̄γ
,

lim
n→∞

cn =
δηȳ2

(x̄+ ηȳ)2
, lim

n→∞

dn =
δx̄2

(x̄+ ηȳ)2
.

Now the limiting system of error terms can be written as

[

e1n+1

e2n+1

]

=

[

α−ȳβ
(1+x̄γ)2

− x̄β
1+x̄γ

δηȳ2

(x̄+ηȳ)2
δx̄2

(x̄+ηȳ)2

][

e1n

e2n

]

,

which is similar to linearized system of (2) about the equilibrium point (x̄, ȳ).

Using proposition (1), one has following result.

Theorem 7. Assume that {(xn, yn)} be a positive solution of the system (2) such that

lim
n→∞

xn = x̄, and lim
n→∞

yn = ȳ, where

(x̄, ȳ) =

(

(α− 1)η

β(δ − 1) + γη
,
(α− 1)(δ − 1)

β(δ − 1) + γη

)

.

Then, the error vector en =

(

e1n

e2n

)

of every solution of (2) satisfies both of the following

asymptotic relations

lim
n→∞

(‖en‖)
1

n = |λ1,2FJ(x̄, ȳ)|, lim
n→∞

‖en+1‖

‖en‖
= |λ1,2FJ (x̄, ȳ)|,

where λ1,2FJ(x̄, ȳ) are the characteristic roots of Jacobian matrix FJ(x̄, ȳ).
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6 Examples

In this section, we consider three numerical examples for the system (2). First two ex-

amples show that the unique positive equilibrium point of the system (2) is globally

asymptotically stable, i.e., the condition (4) of theorem 4 is satisfied, where as from third

example it is clear that the unique positive equilibrium point of the system (2) is unstable,

i.e., the condition (4) of theorem 4 does not hold.

Example 1. Let α = 12.1, β = 0.97, γ = 5, δ = 14.4, η = 2.1. Then, system (2) can be

written as

xn+1 =
12.1xn − 0.97xnyn

1 + 5xn
, yn+1 =

14.4xnyn
xn + 2.1yn

, (14)

with initial conditions x0 = 1, y0 = 6.

In this case the unique positive equilibrium point
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

=

(0.991999, 6.3299). Moreover, γη(αδ − 1) = 1819.02 and (α − 2)β(δ − 1)2 = 1759.15.

Hence, stability condition (4) of theorem 4 is satisfied. The plots of xn and yn for the

system (14) are shown in Figures (1) and (2), respectively. An attractor of the system

(14) is shown in Fig. (3).

Example 2. Let α = 125, β = 1.95, γ = 34, δ = 345, η = 19.39. Then, system (2) can

be written as

xn+1 =
125xn − 1.95xnyn

1 + 34xn
, yn+1 =

345xnyn
xn + 19.39yn

, (15)

with initial conditions x0 = 1.8, y0 = 32.

Figure 1: Plot of xn for the system (14)
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Figure 2: Plot of yn for the system (14)

In this case the unique positive equilibrium point
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

=

(1.80771, 32.0707). Moreover, γη(αδ − 1) = 2.84299 × 107 and (α − 2)β(δ − 1)2 =

2.83829×107. Hence, stability condition (4) of theorem 4 is satisfied. The plots of xn and

yn for the system (15) are shown in Figures (4) and (5), respectively. An attractor of the

system (15) is shown in Fig. (6).

Example 3. Let α = 279, β = 6, γ = 130.1, δ = 657, η = 29.99. Then, system (2) can

be written as

xn+1 =
279xn − 6xnyn
1 + 130.1xn

, yn+1 =
657xnyn

xn + 29.99yn
, (16)

with initial conditions x0 = 1.2, y0 = 25.

In this case the unique positive equilibrium point
(

(α−1)η
β(δ−1)+γη

, (α−1)(δ−1)
β(δ−1)+γη

)

is unstable.

Moreover, γη(αδ−1) = 7.15189×108 and (α−2)β(δ−1)2 = 715218432. Hence, stability

condition (4) of theorem 4 does not hold. The plots of xn and yn for the system (16)

are shown in Figures (7) and (8), respectively. The parametric plot of the system (16) is

shown in Fig. (9).
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Figure 3: An attractor of the system (14)

Figure 4: Plot of xn for the system (15)

Figure 5: Plot of yn for the system (15)
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Figure 6: An attractor of the system (15)

Figure 7: Plot of xn for the system (16)

Figure 8: Plot of yn for the system (16)
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Figure 9: Phase portrait of system (16)

7 Conclusions

This work is related to the qualitative behavior of a discrete-time predator-prey model.

We proved that the system (2) has a unique positive equilibrium point, which is locally

asymptotically stable. The method of linearization is used to prove the local asymptotic

stability of unique equilibrium point. Linear stability analysis shows that the steady

states of the system (2) will be stable under the condition ηγ(αδ − 1) > (α − 2)β(δ −

1)2. The experimental verification of this necessary and sufficient condition is clear from

numerical examples. The main objective of dynamical systems theory is to predict the

global behavior of a system based on the knowledge of its present state. An approach

to this problem consists of determining the possible global behaviors of the system and

determining which initial conditions lead to these long-term behaviors. In case of nonlinear

dynamical systems, it is very crucial to discuss global behavior of the system. In the

paper, we prove the global asymptotic stability of the unique equilibrium point the system

(2). Moreover, we investigated the rate of convergence of a solution that converges to

the unique positive equilibrium point of the system (2). Some numerical examples are

provided to support our theoretical results. These examples are experimental verifications

of theoretical discussions. The main result of this paper is to prove the global asymptotic

stability of the unique positive equilibrium point of the system (2).
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