A Study on Automobile Air-Conditioning Based on Absorption Refrigeration System Using Exhaust Heat of a Vehicle

S.S.Mathapati¹, Mudit Gupta², Sagar Dalimkar³

¹Assistant Professor, Department of mechanical Engineering, Sinhgad Institute of Technology, Lonavala, Maharashtra
²Scholar, Department of mechanical Engineering, Sinhgad Institute of Technology, Lonavala, Maharashtra

E-mail- muditgupta9210@gmail.com

ABSTRACT — Energy from an exhaust of an internal combustion engine is used to power an absorption refrigeration system to air-condition an ordinary passenger vehicle. Feasibility study has been done to find out the energy available from exhaust gas of a vehicle. Cooling load for the automobile has been estimated. In this paper theoretical evaluation of LiBr-Water based absorption refrigeration system is presented. Mathematical modeling of system using EES software is done. Also, effects on COP of system with change in different parameters has been studied.

Keywords: Automobile Exhaust, Absorption Refrigeration System, Internal Combustion Engine, EES

INTRODUCTION

In vapour absorption refrigeration system, a physicochemical process replaces the mechanical process of the vapour compression system by using energy in the form of heat rather than mechanical work. The main advantage of this system lies in possibility of utilizing energy from exhaust of a vehicle and also using an eco-friendly refrigerant such as water. The vapour absorption system has many favorable characteristics; typically a much smaller electrical input is required to drive the solution pump as compared to the power requirement of the compressor in the vapour compression system. Also, fewer moving parts mean lower noise level, higher reliability and improved durability in vapour absorption system.

METHODOLOGY

In vapour absorption refrigeration system as shown in FIG 1, the compressor is replaced by an absorber, a pump, a generator and a pressure reducing valve. These components in the system perform the same function as that of compressor in VCR system. The vapour refrigerant from evaporator is drawn into the absorber where it is absorbed by the weak solution of refrigerant forming a strong solution. This strong solution is pumped to the generator where it is heated utilizing exhaust heat of vehicle. During the heating process the vapour refrigerant is driven off by the solution and enters into the condenser where it is liquefied. The liquid refrigerant then flows into the evaporator and the cycle is completed.

FIG [1]
MEASURED EXHAUST USEFUL HEAT AND HEAT LOAD CALCULATION

To generate base line data, the engine is allowed to run at different throttle position (one-fourth and half) considering engine speed as running parameter. The mass flow rate of air, mass flow rate of fuel and temperature of exhaust gas is measured as given in Table 1. For measuring the required data plenum chamber (1 m³) with circular orifice of 32 mm diameter, inclined tube manometer, burette for petrol measurement and thermocouple for exhaust temperature measurement installed on engine. The determination of actual load becomes very difficult in vehicle air conditioning because of the variation of the load in the climatic conditions when the vehicle is exposed during the course of long journey. The cooling load of a typical automobile is also considered at steady state conditions. The cooling capacity is affected by outdoor infiltration into vehicle and heat gain through panels, roofs, floors etc. The cooling load considered in this analysis is given in Table 2. The table shows that heat load inside the traveler is 2 kW. Therefore, 2 KW air conditioning unit is sufficient to fulfill the cooling.

<table>
<thead>
<tr>
<th>Throttle position opening</th>
<th>Eng. Speed (rpm)</th>
<th>Air Pr. (mm of H₂O)</th>
<th>Time for cons. of 25cc of fuel (sec)</th>
<th>Exh. Temp (°C)</th>
<th>Mass of fuel (kg/s x 10⁻⁵)</th>
<th>Mass of air (kg/s x 10⁻⁴)</th>
<th>Mass Exh. useful energy (KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>3500</td>
<td>7.4</td>
<td>40</td>
<td>622</td>
<td>46</td>
<td>64</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>7.9</td>
<td>57</td>
<td>605</td>
<td>32</td>
<td>67</td>
<td>3.91</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>7.2</td>
<td>48</td>
<td>566</td>
<td>38</td>
<td>64</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>5.6</td>
<td>42</td>
<td>623</td>
<td>44</td>
<td>56</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>4.9</td>
<td>41</td>
<td>502</td>
<td>45</td>
<td>52</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>3500</td>
<td>14.8</td>
<td>34</td>
<td>669</td>
<td>57</td>
<td>91</td>
<td>6.02</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>15.9</td>
<td>29</td>
<td>615</td>
<td>63</td>
<td>94</td>
<td>5.74</td>
</tr>
<tr>
<td>Half</td>
<td>2500</td>
<td>12.3</td>
<td>24</td>
<td>648</td>
<td>71</td>
<td>83</td>
<td>5.47</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>9.4</td>
<td>32</td>
<td>595</td>
<td>57</td>
<td>73</td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>6.8</td>
<td>39</td>
<td>508</td>
<td>47</td>
<td>62</td>
<td>3.61</td>
</tr>
</tbody>
</table>

TABLE [1]

Heat load inside the vehicle is calculated as follows:

We have considered passengers in the traveler and calculated the following:-

- Radiation Load
 \[Q_{rad} = \sum S^*r^*I_{rad}^*\cos\theta \]

- Ambient Load
 \[Q_{amb} = \sum S^*U^*(T_r - T_i) \]

- Ventilation Load
 \[Q_{ven} = m_{ven}^* (e_o - e_i) \]
• Metabolic Load
 \[Q_{meta} = \sum M \cdot A \]

• Overall Heat Load
 \[Q_{AC} = (Q_{rad} + Q_{amb} + Q_{ven} + Q_{meta}) \]

<table>
<thead>
<tr>
<th>Heat Load</th>
<th>Amount of Heat (KJ/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Load</td>
<td>85.83</td>
</tr>
<tr>
<td>Ambient Load</td>
<td>422.83</td>
</tr>
<tr>
<td>Ventilation Load</td>
<td>59.54</td>
</tr>
<tr>
<td>Metabolic Load</td>
<td>1356.23</td>
</tr>
<tr>
<td>Total</td>
<td>1924.43 (KJ/hr) or 1.9 Kw</td>
</tr>
</tbody>
</table>

TABLE [2]

MODELLING OF ABSORPTION SYSTEM

Following assumptions have been made to model the system:

1. Generator and condenser as well as evaporator and absorber are under same pressure.
2. There are no pressure changes except through the flow restrictors and the pump.
3. Refrigerant vapor leaving the evaporator is saturated pure water.
4. Liquid refrigerant leaving the condenser is saturated.
5. Strong solution leaving the generator is boiling.
6. Weak solution leaving the absorber is saturated.
7. No liquid carryover from evaporator.
8. Flow restrictors are adiabatic.
9. Pump is isentropic.
10. No jacket heat losses

FIG [2]

www.ijergs.org
• 1st point is saturated water vapor;
• 2nd point is superheated water vapor;
• 3rd point is saturated liquid water;
• 4th point is vapor-liquid water state;
• 5th point is saturated liquid solution;
• 6th point is sub-cooled liquid solution (at P_Low);
• 7th point is sub-cooled liquid solution (at P_High);
• 8th point is saturated liquid solution;
• 9th point is sub-cooled liquid solution;
• 10th point is vapor-liquid solution state.

2 KW Aqueous Lithium Bromide Absorption System

Assumptions Taken:-
Condenser Temperature = 38°C
Evaporator Temperature = 7°C
Absorber Temperature = 37°C
Generator Temperature = 85°C
Pressure values taken from p-h chart of water as refrigerant for condensing temperature 35°C and evaporating temperature 7°C
P_L = 1 KPa
P_C = 5.696 KPa

1. For Evaporator
 Process Cycle 4-1
 Heat load on Evaporator \(Q_E = 2KW \)
 \(Q_E = m_r(h_1 - h_4) \)
 For Defined System
 \(m_r = m_1 = m_4 = 0.000844 \text{ Kg/Sec} \)

2. For Generator
 Process Cycle 7-2
 Mass Balancing Of Weak and Strong Solution
 \(m_7 = m_2 + m_8 \)
 \(m_7x_7 = m_8x_8 \)
 \(m_7 = 0.0101 \text{ K/g Sec} \)
 \(m_8 = 0.00928 \text{ K/g Sec} \)
 \(m_2 = 0.000844 \text{ K/g Sec} \)
 \(Q_g = m_2h_2 + m_8h_8 - m_7h_7 \)
 \(Q_g = 0.0909*m_2*h_2 + m_8*h_8 - 1.0909*m_8*h_7 \)
 \(Q_g = 2.725 \text{ KW} \)
 For Defined System
 \(m_8 = m_9 = m_{10} = 0.00928 \text{ K/g Sec} \)
 \(m_7 = m_6 = m_5 = 0.01010 \text{ K/g Sec} \)
 \(m_2 = m_3 = m_4 = m_1 = 0.000844 \text{ K/g Sec} \)

3. For Condenser
 Process Cycle 2-3
 Heat Rejected by Condenser \(Q_c = m_2(h_2 - h_3) \)
 \(Q_c = 2.113 \text{ KW} \)

4. For Absorber
 Process Cycle 1-5
 Heat Rejected by Absorber \(Q_a = m_1h_1 + m_{10}h_{10} - m_3h_3 \)
 www.ijergs.org
Q_s = 2.567 KW

5. For Solution Heat Exchanger

 Process Cycle 6, 9 - 7, 8

 Heat transfer Q_{SHEX} = m_s \cdot (h_7 - h_6)

 Q_{SHEX} = 0.416 KW

SYSTEM ANALYSIS

System analysis is based on certain fixed parameters which are shown in Table No.3 by using this fixed parameters COP, Mass flow rate of refrigerant, mass flow rate of strong solution, mass flow rate of weak solution, heat transfer in generator, condenser and absorber are found out using EES software and the effect of generator temperature, evaporator temperature, condenser temperature and absorber temperature on system COP is analysed using EES software.

INPUT PARAMETERS

\[T_g = \text{Generator Temperature (°C)} \quad 85°C \]
\[T_e = \text{Evaporator Temperature(°C)} \quad 7°C \]
\[T_c = \text{Condenser Temperature(°C)} \quad 35°C \]
\[T_a = \text{Absorber Temperature(°C)} \quad 37°C \]
\[Q_e = \text{Load (kcal/hr)} \quad 1720(kcal/hr) \]

Table No.3

EES PROGRAMM
CONCLUSION
As per the calculations of heat load and heat availability obtained from a vehicle a 2kW system is feasible to provide air conditioning in a vehicle. From system analysis it is seen that COP of system increases with increase in generator temperature and evaporator temperature but it reduces with increase in condenser and absorber temperature. There is optimum value of generator temperature above which COP reduces also COP increases with increase in mass flow rate of water (m_w).

REFERENCE:

