Morphology, Morphometry and Neuroanatomy of the Olfactory Epithelium and the Olfactory Bulb of a Featherback Fish, *Notopterus notopterus*

Patle Pratap J and Baile Vidya V

Division of Fish Neurobiology, PG Department of Zoology, RTM Nagpur University Campus, Nagpur- 440033, India.

*Corresponding author e-mail: baile.vidya@gmail.com

ABSTRACT

Olfactory organs of fishes show wide range of variations depending upon the systematic groups and ecological habitats. Number, shape and arrangement of the lamellae vary considerably among different teleosts ranging from flat unfolded surface to multi-lamellar rosette. Objective of the present work was to study the organization of olfactory system of *Notopterus notopterus*. As it is demersal in habitat, olfaction is expected to play a prominent role in various life processes. With the help of Haematoxylin-Eosin and Kluver and Barrera (1953) staining techniques, organization of the olfactory epithelium and olfactory bulb was studied. In *N. notopterus*, olfactory epithelium is a multilamellar structure comprising 70-76 lamellae radiating from a median raphe. Each lamella comprises sensory and nonsensory regions. Sensory region shows ciliated, microvillous, crypt receptor cells, supporting cells and basal cells. Nonsensory region has ciliated nonsensory cells, basal cells and mucous cells. Within the median raphe, distinct melanophores innervated by axons from olfactory receptor neurons are observed. Olfactory epithelium is connected to the bulb by a short olfactory nerve. Olfactory bulb is a concentrically arranged four layered structure with olfactory nerve layer on the outermost side followed by glomerular layer, mitral cell layer and granular cell layer. Ruffled cells are observed surrounding the mitral cells. In dorsomedial region of the olfactory bulb, giant cells of nervus terminalis are prominent. In the present study, fiber projections from the olfactory receptor neurons to ventral telencephalon are clearly demonstrated histologically, indicating the pathway of chemosensory signal from olfactory receptor neurons to the higher brain areas. This work will be useful to study the neuroanatomy of the olfactory system and ultimately to understand neurobiology of fish olfaction.

Key Words: chemosensation, olfactory receptor neurons, projections, teleost

INTRODUCTION

Olfaction and gustation are chemosensory systems that support fish survival. Olfaction is involved in diverse teleost behaviors (Hara, 1992) such as food-finding (Valentinčič, 2005), reproductive behavior, detecting and avoiding danger (Farbman, 1994), kin recognition (Rajakaruna et al., 2006), reproduction (Olsén and Liley, 1993), and to find home stream during spawning migration by salmon (Stabell, 1992; Ueda et al., 1998; Shoji et al., 2000).
Functional neuroanatomy of olfaction is interesting to study as it is the only organ in fish where nerve cells are directly exposed to the environment. The olfactory organs of fishes show wide range of variations depending upon systematic groups and ecological habitats (Zeiske et al., 1992; Hansen and Reutter, 2004). In fish and other vertebrates, this system consists of peripheral part called as olfactory rosette including the olfactory nerve formed by axons of olfactory receptor neurons (ORNs) and central part comprising olfactory bulb and higher brain areas involved in processing of olfactory information (Hansen and Reutter, 2004).

In some teleost fish, the peripheral olfactory organ, known as olfactory rosette, is composed of olfactory lamellae covered with olfactory epithelia (Zeiske et al., 1992; Hansen and Zielinski, 2005) situated on the floor of nasal chamber. Studies revealed that enormous diversities exist regarding the shape, number, and arrangement of olfactory lamellae, distribution of sensory and non-sensory epithelia as well as the abundance of various receptor cell types in different teleosts. The foldings or lamellae of olfactory epithelium increase the surface area of epithelium as well as the sensitivities and efficacy of olfactory organ (Zeiske et al., 1976).

As in other vertebrates, teleost ORNs, the main components of sensory epithelium relay olfactory information to the brain (Satou, 1992). Their axons project to the olfactory bulb (OB), the first relay station in the brain. OB can be pedunculated or close to telencephalon. Morphology of the OB is rather consistent across the vertebrate lineage. Distinct layers of cells process the incoming information and convey it to the higher brain centers. The layers in fish from outside to inside are: 1) the olfactory nerve layer (ONL), 2) the glomerular layer (GL), 3) the mitral cell layer (MCL) and 4) the internal cell layer i.e. granular cell layer (GCL). Olfactory nerve endings branch at their very end and synapse on the second-order neurons, the mitral cells. Fish mitral cells have a large cell body and more than one dendrite. In addition to the synaptic input from ORNs, mitral cells form numerous dendro-dendritic reciprocal synapses with granule cells of the internal cell layer.

Another type of neuron occurs between the mitral cells, the ruffled cell (Kosaka, 1980; Kosaka and Hama, 1981; Patle, 2013). These cells synapse to other neurons and surround mitral cell dendrites resembling glial cell processes (Kosaka, 1980). Local interneuron’s (granule cells) of the internal cell layer receive the input from centrifugal fibers from higher telencephalon (Ichikawa, 1976). Axons of the mitral cells and ruffled cells run through the olfactory tract (OT) and convey their information to the telencephalon. This is evident as fibers of the OT terminate on various brain areas (Okada et al., 1982; Satou, 1990; 1992; Huesa et al., 2000). The OT is divided into two bundles, the lateral olfactory tract (LOT) and the medial olfactory tract (MOT). Both bundles are divided further into smaller bundles (Sheldon, 1912). Each bundle conveys distinct classes of information (Sorensen et al., 1991; Hamdani et al., 2001a; Hamdani et al., 2001b). Much of the information is available on Cyprinids; however, there is dearth of knowledge in some aspects of these studies relating to the olfactory system of Clupeids. An effort has been made in the present investigation to describe morphology, morphometry and neuroanatomy of the olfactory epithelium and the olfactory bulb of a fresh water teleost, Notopterus notopterus belonging to order Osteoglossiformes.

MATERIALS AND METHODS

Animal subject

Adult featherbacks (N. notopterus) of either sex (n = 12) with body weight ranging between 125g to 150g and length 24cm to 29cm were obtained from Telangkhedi-Futala lake, Nagpur City. After transport, fishes were maintained in well-aerated glass aquaria (3×2×1.5) for a week to allow the stress from transportation to subside and to acclimatize them to laboratory conditions (photoperiod 12L: 12D; water temperature 25˚C ± 1˚C).

After acclimatization, fishes were anaesthetized with an aqueous solution of 2 phenoxyethanol (0.03%; P 1126; Sigma), decapitated and olfactory system with the brain was dissected out and further processed for respective studies. All experimental and animal care protocols were approved by the Institutional Animal Care and Use Committee.

Morphology and Morphometric analysis

For morphological studies, dissected tissues were observed under Leica (MS5) stereo dissecting microscope and measurements of various parts of olfactory organ were noted. All the numeral data in results were presented as mean values ± standard deviations (SD).

Neuroanatomical studies

After dissecting out, tissues were immediately fixed in aqueous Bounin’s fixative for 24 hrs, dehydrated in graded series of alcohol and embedded in paraffin wax after clearing in xylene. For neuroanatomical studies, sections of olfactory epithelium, olfactory bulb and olfactory epithelium in connection with bulb were cut at 10 μm thickness in transverse as well as sagittal planes on a vibratome, mounted on Mayer’s albumin coated slides, and then subjected to Haematoxylin-Eosin and Kluver and Barrera (1953) staining.
Structural analysis and use of nomenclature

The stained sections were analyzed on a Nikon Eclipse E200 photomicroscope and different nuclear groups were identified according to the characteristic size, shape and staining intensity of the perikaryon, packing density as well as distribution pattern of the cell bodies. For the identification and nomenclature of various cell types in the olfactory epithelium and bulb, we mainly relied on Hansen and Zeiske (1998), Hansen and Reutter (2004), Hansen and Zielinski (2005), Bhute and Baile (2007), Baile et al. (2008), Patle (2009), Baile and Patle (2011) and Patle (2013).

Cell and nuclear diameter were measured with an oculometer. Cells (n = 50) were counted for each of the cell types. All the numeral data in results were presented as mean values ± standard deviations (SD).

Photo plates and images

Desired fields from various sections were photographed using Nikon (E8400) camera at different magnifications and adjusted for size, contrast and brightness in Adobe Photoshop 7.0 and Corel Photo-Paint X4 software. The line drawings and photo plates were prepared using Corel Draw X4 (version 14) software. Scale bars were expressed in terms of µm and measurements were taken by using an oculometer.

RESULTS

Featherback fish, *N. notopterus* (Fig. 1A) belongs to family Notopteridae of the order Osteoglossiformes. It is a fresh water demersal teleost, having laterally compressed body and its head is very small compared to its body size.

Morphology and Morphometry of the olfactory epithelium and bulb

In *N. notopterus*, paired olfactory organs with short olfactory nerve attached with bulb are situated on the snout region in the cavity called olfactory pits or olfactory chambers enclosed by a skin flap. Each organ is connected ventrally to the telencephalic hemisphere of brain by a long olfactory tract (Fig. 1B). It has an inlet situated at the base of short barbell just behind the mouth and an outlet at a distance from it nearer the eye. The olfactory organ is a cup shaped elongated structure possessing a series of 70–76 lamellae radiating from a central raphe on both the sides (Fig. 2A, B). The lamellae in the middle of rosette (on both sides) are the largest while they gradually taper towards anterior and posterior ends of the rosette (Fig. 2B, C). The data of morphometrics i.e. dimensions of the olfactory system are summarized in Table 1.

Fig. 1: (A) Photograph of *Notopterus notopterus*. (B) In situ photograph of olfactory organ with brain of *Notopterus notopterus* showing; cerebrum (C), cerebellum (CEB), olfactory bulb (OB), olfactory epithelium (OE), optic lobe (OptL), olfactory tract (OT) and spinal cord (SPC).
Morphology, Morphometry and Neuroanatomy of the Olfactory Epithelium and the Olfactory Bulb

Table 1: Morphometric analysis of the olfactory system in *N. notopterus*

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Particulars</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length</td>
</tr>
<tr>
<td>1.</td>
<td>Fish</td>
<td>28 ± 0.83 cm</td>
</tr>
<tr>
<td>2.</td>
<td>Head</td>
<td>58 ± 3.16 mm</td>
</tr>
<tr>
<td>3.</td>
<td>Olfactory system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>Olfactory epithelium (OE)</td>
<td>Length 8.2 ± 0.8 mm</td>
</tr>
<tr>
<td>a.</td>
<td>Ciliated olfactory receptor cells (ciORC)</td>
<td>Cell body 7.6 ± 0.31 µm</td>
</tr>
<tr>
<td>b.</td>
<td>Microvillous olfactory receptor cells (mORC)</td>
<td>Cell body 5.5 ± 0.41 µm</td>
</tr>
<tr>
<td>c.</td>
<td>Crypt olfactory receptor cells (crORC)</td>
<td>Diameter 2.9 ± 0.22 µm</td>
</tr>
<tr>
<td>d.</td>
<td>Supporting cells (SC)</td>
<td>Diameter 7.6 ± 0.31 µm</td>
</tr>
<tr>
<td>e.</td>
<td>Ciliated Non-sensory cells (ciNSC)</td>
<td>Cell body 5.76 ± 0.23 µm</td>
</tr>
<tr>
<td>f.</td>
<td>Goblet cells (GC)/Mucous cells (MC)</td>
<td>Diameter 8.66 ± 0.86 µm</td>
</tr>
<tr>
<td>g.</td>
<td>Basal cells (BC)</td>
<td>Diameter 3.9 ± 0.47 µm</td>
</tr>
<tr>
<td>B.</td>
<td>Olfactory nerve (OlfN)</td>
<td>Length 1.1 ± 0.07 mm</td>
</tr>
<tr>
<td>C.</td>
<td>Olfactory bulb (OB)</td>
<td>Length 2.44 ± 0.11 mm</td>
</tr>
<tr>
<td>a.</td>
<td>Mitral cells (MC)</td>
<td>Diameter 11.5 ± 0.43 µm</td>
</tr>
<tr>
<td>b.</td>
<td>Ruffled cells (RC)</td>
<td>Diameter 5.4 ± 0.44 µm</td>
</tr>
<tr>
<td>c.</td>
<td>Granular cells (GC)</td>
<td>Diameter 4.74 ± 0.20 µm</td>
</tr>
<tr>
<td>d.</td>
<td>Nervous terminalis (NT)</td>
<td>Diameter 7.6 ± 0.22 µm</td>
</tr>
<tr>
<td>D.</td>
<td>Olfactory tract (OT)</td>
<td>Length 12.2 ± 0.74 mm</td>
</tr>
<tr>
<td>4.</td>
<td>Eye</td>
<td>Diameter 8.62 ± 0.31 mm</td>
</tr>
<tr>
<td>5.</td>
<td>Brain</td>
<td>Length 16.8 ± 0.82 mm</td>
</tr>
</tbody>
</table>

*Cells (n = 50) were counted for each of the cell types and all the values are presented as mean ± standard deviations (SD).

Neuroanatomy of the olfactory epithelium and bulb

Olfactory epithelium (OE) of *N. notopterus* is a continuous thick sheet (30-35µm) of pseudo-stratified columnar epithelial cells which is folded to form olfactory lamellae (Fig. 2F). In the lamellae, epithelium encloses a central lumen called central core (CC)/lamina propria (LP) which contains blood vessels, connective tissues and nerve fibers (Fig. 2E, F, G). The CC/LP and OE are separated by a basal lamina (Fig. 2E, F, G). Within the median raphe and lamina propria, very distinct widely distributed melanophore like structures are observed (Fig. 2C, D, E) which are innervated by the fibers from ORNs. The lamellae show sensory (S) and nonsensory (NS) regions which are arranged very regularly (Fig. 2C, D). Sensory region is located at the proximal end and towards the basal area of lamellae comprising columnar ciliary receptor cells, columnar microvillous receptor cells, crypt receptor cells, columnar supporting cells and round basal cells (Fig. 2D, E, F). Supporting cells and receptor cells are arranged in alternate rows and basal cells are situated at the base just above the basal lamina (Fig. 2E, F). Sensory region is at the middle of lamellae covered by columnar ciliated non-sensory cells, goblet cells/mucous cells and basal cells (Fig. 2D, E, G, H). These lamellae receive fascicles or fibers at its proximal end from ORNs and extend into short olfactory nerve (Fig. 4A, B, C). This nerve continues further into the olfactory bulb and spreads profusely at the periphery of bulb to form primary olfactory nerve layer (Fig. 4A, C) of the OB.

Cell types in olfactory epithelium

1) Ciliated olfactory receptor cells (ciORC): These are largest among all the types of ORCs distributed throughout the sensory epithelium having 7.6 ± 0.31 µm of cell body and 11.18 ± 0.60 µm of dendrite. ciORC are columnar, bipolar cells bearing a basally located cell body, a thin long dendrite reaching upto epithelial surface with apically arranged cilia and an axonal process toward the basal lamina. The cell body containing a round prominent nucleus is situated deep in the epithelium. The cytoplasm is highly granular and intensely stained (Fig. 2E, F).
Fig. 2: (A) Lateral view of the dissected olfactory organ with brain showing location of olfactory epithelium. (B) Magnified view of the olfactory epithelium (OE) showing median raphe (R). (C) Transverse section of the olfactory epithelium showing olfactory lamellae (OlfL) radiating from the central raphe (R) and melanophores (M). Scale bar = 500µm. (D) Transverse section of the olfactory epithelium showing location of sensory (S) and nonsensory (NS) regions of the olfactory lamellae. Scale bar = 100µm. (E) Magnified view of the sensory and nonsensory regions of the olfactory lamellae showing basal cell (BC), basal lamina (BL), central core (CC)/lamina propria (LP), ciliated nonsensory cell (cNSC), crypt olfactory receptor cell (crORC), ciliated olfactory receptor cell (ciORC), melanophore (M), microvillous olfactory receptor cell (mORC) and supporting cell (SC). Scale bar = 25µm. (F) Magnified view of the sensory region of the olfactory lamellae showing; basal cell (BC), basal lamina (BL), central core (CC)/lamina propria (LP), crypt olfactory receptor cell (crORC), ciliated olfactory receptor cell (ciORC), microvillous olfactory receptor cell (mORC) and supporting cell (SC). Scale bar = 25µm. (G) Magnified view of the nonsensory region of the olfactory lamellae showing; basal cell (BC), basal lamina (BL), central core (CC)/lamina propria (LP) and ciliated nonsensory cells (cNSC). Scale bar = 25µm. (H) Magnified view of the nonsensory region at tip of the olfactory lamellae showing mucous cells (MC). Scale bar = 25µm.
Fig. 3: (A) Lateral view of *in situ* photograph of olfactory organ with brain of *Notopterus notopterus* showing location of olfactory bulb. (B) Transverse section of the olfactory bulb. Scale bar = 200µm. (C) Part of transverse section of the olfactory bulb showing concentrically arranged four layers viz: Olfactory nerve layer (ONL), Glomerular layer (GL) showing formation of glomeruli (arrow), Mitral cell layer (MCL) showing mitral cell (MC) and ruffed cell (RC) and Granular cell layer (GCL). Scale bar = 100µm. (D) Magnified part of ONL showing innervations of olfactory nerve fibers. Scale bar = 50µm. (E) Magnified part of the glomerular layer showing formation of glomeruli (arrow). Scale bar = 50µm. (F) Magnified part of the MCL showing Mitral cells (MC) and ruffed cells (RC). Scale bar = 50µm. (G) Magnified part of the GCL showing granular cells (GC). Scale bar = 50µm. (H) Magnified view of the mitral cell (MC). Scale bar = 25µm. (I) Part of the transverse section of the dorsomedial region of the olfactory bulb showing neurons of nervus terminalis (NT). Scale bar = 50µm.
Fig. 4: (A) Diagrammatic representation of the mid sagittal section of the olfactory system of *N. notopterus* showing fibers from olfactory receptor neurons entering the olfactory bulb through short olfactory nerve (OlfN), forming olfactory nerve layer (ONL). Location of glomerular layer (GL), mitral cell layer (MCL), granular cell layer (GCL), lateral olfactory tract (LOT) and medial olfactory tract (MOT) is also depicted. (B) Part of the mid sagittal section of the olfactory epithelium showing fibers from the olfactory receptor neurons (OlfNF) entering the olfactory nerve. Scale bar = 200µm. (C) Mid sagittal section of the olfactory system showing fibers from the olfactory receptor neurons (OlfNF) entering into olfactory bulb through short olfactory nerve (OlfN) forming primary olfactory nerve layer (ONL) and glomeruli (broad arrow). Scale bar = 400µm. (D) Part of the transverse section of ventral telencephalon showing projections of olfactory tract comprising medial olfactory tract (MOT) and lateral olfactory tract (LOT). Scale bar = 200µm.

2) Microvillous olfactory receptor cells (mORC): These are of moderate size having 5.5 ± 0.41 µm of cell body and 6.56 ± 0.40 µm of dendrite. mORC are columnar bipolar cells with a cell body located midway, thick moderate length dendrite reaching upto epithelial surface without cilia and an axonal process towards the basal lamina. Cell body is more superficial in the epithelium than the ciORC and possesses a round nucleus. Cytoplasm is granular and stained intensely (Fig. 2E, F). Population of these cells dominated over the ciORC.

3) Crypt olfactory receptor cells (crORC): These are smallest among all the ORCs, having 2.9 ± 0.22 µm diameter. Crypt cells are spherical or pear-shaped having cell body situated apically just close to the epithelial surface, devoid of dendrite and with an axonal process toward the basal lamina. They are characterized by submerged cilia in the upper portion of the cell showing intense staining and are very few in number (Fig. 2E, F).

4) Supporting cells (SC): These are of 7.6 ± 0.31 µm size. Supporting cells are elliptical to columnar in shape with a prominent central basophilic nucleus situated deep in the epithelium and without any dendrite and axonal processes. Cytoplasm is less granular and moderately stained (Fig. 2E, F).

5) Ciliated Non-sensory cells (ciNSC): These have 5.76 ± 0.23 µm of cell body and 6.68 ± 0.31 µm of cilia. Ciliated non-sensory cells are columnar, without dendrite and axon and consist of numerous long cilia at its surface. Nucleus is round and located in the middle of the cell showing intense staining (Fig. 2G).

6) Goblet cells (GC) or Mucous cells (MC): These are fairly larger (8.66 ± 0.86 µm), oval in shape and restricted to the nonsensory region of lamellae surrounded by ciliated nonsensory cells consisting of more granules. Olfactory lumen is covered by the mucous (Fig. 2H).
Basal cells (BC): These are small (3.9 ± 0.47 µm), oval in shape with a prominent round central nucleus lying in the deeper part of the epithelium just above the basal lamina in both sensory and non-sensory regions showing intense staining (Fig. 2E, F, G).

The olfactory bulb is oval in shape, pedunculated and anatomically divisible into four concentric layers (Fig. 3A, B, C). Outer layer is called as olfactory nerve layer (ONL) which has axons of ORNs (Fig. 3C, D). Below ONL, axons group together or arborise, forming glomeruli, called as glomerular layer (GL) (Fig. 3C, E). The glomeruli innervate the bigger sized multipolar neurons called mitral cells forming the mitral cell layer (MCL) which shows moderate staining (Fig. 3C, F, H). In the centre, densely packed small rounded cells are present forming granular cell layer (GCL) (Fig. 3C, G) which exhibits intense staining. Another type of neuron occurs surrounding the mitral cells, the ruffled cells (Fig. 3C, F) which are smaller in size as compared to the mitral cells. Nerve bundles carrying afferent fibers from the olfactory organs extend caudally over the olfactory nerves, penetrate the bulb from rostral pole and spread along the periphery of bulb to terminate on dendrites of mitral cells in glomerular layer (Fig. 4A, B, C). Axons of the mitral cell and ruffled cell run through the OT (comprising LOT and MOT) and extend to various telencephalic areas (Fig. 4D). Some cells are placed in dorsomedial and ventromedial position and are intensely stained. These are the giant cells of nervus terminalis (NT) (Fig. 3I).

DISCUSSION

In *N. notopterus* olfactory organs are paired situated on the snout. Each organ has two openings through which water enters and leaves the olfactory chambers. In *N. notopterus* sp. anterior inlet is in the form of an incomplete open membranous tube-like inlet. It is an unique feature and seems to be a specialized case of adaptation due to their shallow water and muddy habit. The tube-like inlet enables a fish to burrow and search for food in mud with no danger to its olfactory organ becoming clogged with silt particles (Datta Munshi and Hughes, 1992). The olfactory organs of fishes show wide range of variations depending upon the systematic groups and ecological habitats (Zeiske et al., 1992; Hansen and Reutter, 2004). The morphology and morphometric data indicate that the olfactory organs in this fish are fairly large as compared to its head size and body size. It is thus clear that in *N. notopterus* chemosensory mechanism is strongly developed.

In some teleosts, the olfactory rosette is composed of olfactory lamellae covered with olfactory epithelia (Zeiske et al., 1992; Hansen and Zielinski, 2005) situated on the floor of nasal chamber. Olfactory epithelium in *N. notopterus* is a continuous thick sheet of pseudo-stratified columnar epithelial cells; 30-35 µm in thickness. It is 35 µm in the piranha, *Serrasalmus nattereri* (Schulte and Riehl, 1978), 35-55 µm in the European eel, *Anguilla anguilla* (Schulte, 1972), and 60-75 µm in the swordtail, *Xiphophorus helleri* (Zeiske et al., 1976) which is folded to form olfactory lamellae. The number, shape and arrangement of the lamellae vary considerably among different teleosts ranging from flat unfolded surface to a multi-lamellar rosette (Yamamoto, 1982; Zeiske et al., 1992). Teichmann (1954) has noted that olfactory organs and eyes are equally well developed in *N. notopterus* and *Hilsa ilisha* and included them in the eye and nose fish group on the basis of ratio of the surface area of the olfactory lamellae to that of the retinae. The large surface area provided by the olfactory lamellae increases the sensitivity and efficacy of the olfactory system (Zeiske et al., 1976). This view is supported by our study as olfactory rosette in *N. notopterus* is a multi-lamellar rosette comprising large number (70-76) of lamellae which may provide more surface area for the binding of odors. Generally lamellae are arranged laterally around the central raphe in *Danio rerio* (Hansen and Zeiske, 1998), *Clarias batrachus* (Khan et al., 1998, 1999), *Cirrhinus mrigala* (Biju et al., 2003), *Oreochromis mossambicus* (Singru et al., 2003), *A. anguilla* (Hansen and Zielinski, 2005), *Mugil parsva* (Chakrabarti, 2005), *Labeo rohita* (Bhute et al., 2007; Bhute and Baile, 2007), *Wallago attu* (Ghosh and Chakrabarti, 2009) and *Macrognathus aculeatus* (Chakrabarti and Guin, 2011), same arrangement is observed in *N. notopterus*. However, in some other teleosts, olfactory lamellae are arranged at the top of raphe, parallel to each other and in rostro-caudal orientation as in *Channa punctatus* (Mandal et al., 2005) and in *Channa gachua* (Patle, 2013).

In *N. notopterus*, from the median raphe, both sensory and nonsensory regions are located on the olfactory lamellae. Location of these regions varies in different species (Yamamoto, 1982). The sensory region is at the proximal end and basal region of lamellae in *N. notopterus* covering both the sides of lamellae separated by a lamina propria. This is thin sheet of connective tissue containing blood vessels, nerve fibers and in some cases melanophores (Hansen and Reutter, 2004). In *N. notopterus* widely distributed distinct melanophage population is observed in the median raphe and in lamina propria innervated by the nerve fibers which is a novel finding in our study. Previously these structures are observed in median raphe of Zebrasfish (Weth et al., 1996) and in *C. gachua* (Patle, 2013). To our knowledge we are the first ones to report these structures in the olfactory organ of a fresh water member of Osteoglossiformes. On the basis of its
distribution and organization pattern, it can be assumed that melanophores may play an important role in the processing of chemo sensory information. In a Cyprinid L. rohita, sensory region is at the middle of lamellae and nonsensory region is at the proximal and basal regions of lamellae (Bhute et al., 2007; Bhute and Baile, 2007), in Rhodeus amarus, sensory region is at the base and middle of lamellae and nonsensory region is at the proximal end (Baby et al., 2000). In the sensory region, two morphologically distinct types of ORCs, ciliated and microvillous ORCs are prevalent in teleosts (Zielinski and Hara, 1998). They occur together but in varying proportions in different species (Zeiske et al., 2003). In the OE of N. notopterus, mORC are dominant over ciorC, same is observed in C. punctatus (Mandal et al., 2005) whereas ciorC are dominant over the mORC in Labeo bata (Ghosh and Chakraborti, 2011) and in channel catfish, the density of mORC is highest in the medial part of lamellae while that of the ciorC was highest in the lateral areas of lamellae (Ericson and Caprio, 1984).

Third type of cells, crypt ORCs are reported in Cyprinodonts (Zeiske et al., 1976), catfish, swordtail and needlefishes (Hansen et al., 1997), in Zebrafish, D. rerio (Hansen and Zeiske, 1998) and recently by Hansen and Finger (2000). Limited numbers of crypt receptor cells are noticed in our study. Such types of sensory cells can be considered as different functional and structural entities with different sensitivities to external stimuli (Yamamoto, 1982). Thomsen (1983) reported that ciliated ORCs are tuned toward bile salts and microvillous ORCs toward amino acids. However, recent electrophysiological studies concluded that ciliated ORCs might be termed as generalists which respond to varying species of odorants including amino acids, bile salts and other odorants whereas microvillous ORCs might be called as specialist, which respond specifically to amino acids and nucleotides (Sato and Suzuki, 2001; Hansen et al., 2003). In between the sensory receptor cells, columnar supporting cells form a mosaic protecting them from mechanical injury. Basal cells are situated adjacent to the basal lamina and distributed throughout the epithelium in both sensory and nonsensory regions. Basal cells are assumed to be the progenitors of the receptor and supporting cells (Yamamoto, 1982; Zeiske et al., 1992). Same type of arrangement is noticed in N. notopterus.

Adequate ventilation is necessary to bring the odorants in the olfactory chamber for perceiving the chemical signals (Kapoor and Ojha, 1972; Døving et al., 1977; Belanger et al., 2003). Ventilation of the olfactory chamber takes place by either forward motion of the fish, hydraulic pumping of the olfactory sac or by synchronous beating of cilia of ciliated non-sensory cells (Hara, 1993). Since the non-sensory epithelium in N. notopterus is covered with a dense mat of cilia, probably the ventilation of olfactory chamber in this fish is achieved due to the beating action of cilia of ciliated non-sensory cells. Another type of cells found in the nonsensory region are the epidermal cells which form a component of the non-ciliated part of nonsensory epithelium and are structurally identical with those of the fish epidermis (Hawkes, 1974; Hara, 1982). These are observed in C. punctatus (Mandal et al., 2005) and in C. gachua (Patle, 2013). However, these cells are not detected in our study. Mucous cell/goblet cell surrounded by ciliated nonsensory cells or epidermal cells (Hansen and Zeiske, 1998) secretes mucus to protect the epithelium from mechanical abrasion. These cells are previously reported in zebrafish, D. rerio (Hansen and Zeiske, 1998), snakehead, C. punctatus (Mandal et al., 2005), L. rohita (Bhute et al., 2007; Bhute and Baile, 2007), L. attu (Ghosh and Chakraborti, 2009), L. bata (Ghosh and Chakraborti, 2011) and M. aculeatus (Chakraborti and Guin, 2011). Mucous cells in N. notopterus are fairly large and distributed profusely in the nonsensory region.

Axons of olfactory receptor neuron accumulate in the lamina propria of olfactory organ and in turn form the 1st cranial nerve, the olfactory nerve. The olfactory nerve varies in species-specific way (Hansen and Reutter, 2004). In general, fish with short olfactory nerves (goldfish, Carassius auratus and channel catfish, Ictalurus punctatus) have pedunculated OBs, with long olfactory tracts (OTs) and fish with long olfactory nerves tend to have short OTs, which is designated as “sessile” OBs, which are located next to the telencephalon proper as in eel, Anguilla; swordtail, X. helleri (Hansen and Reutter, 2004) and snakehead, C. gachua (Baile and Patle, 2011). OTs form the connection between output neurons from OB and higher brain centers via the lateral olfactory tract (LOT) and the medial olfactory tract (MOT) and convey behaviorally distinct information. These two nerve bundles were observed by Sheldon (1912) in the carp from the medial and lateral parts of olfactory bulb respectively. MOT is subdivided into lateral (LMOT) and medial (mMOT) tracts in goldfish (Stacey and Kyle, 1983; Kyle, 1987; Sorensen et al., 1991) and in Crucian carp, Carassius carassius (Hamdani et al., 2000, 2001a, 2001b; Weltzien et al., 2003). The lateral olfactory tract controls feeding behavior in goldfish, whereas the medial olfactory tract controls reproductive behavior in males (Stacey and Kyle, 1983; Demski and Duika, 1984; Kyle et al., 1987; Sorensen et al., 1991; Von Rekowski and Zippel, 1993). In Crucian carp, LOT has been shown to mediate information associated with feeding behavior, whereas mMOT mediates information associated with alarm response. LMOT mediates reproductive behavior in males (Hamdani et al., 2000, 2001a, 2001b; Weltzien et al., 2003). In N. notopterus, olfactory bulb is of pedunculated type, connected to the telencephalon by two tracts: MOT and LOT. Such type of olfactory organ is
also found in other members of family Cyprinidae (Biju et al., 2003; Bhute et al., 2007) and Acanthidae (Bass, 1981). The reasons for two morphological types of OB (sessile and pedunculated) are not well understood.

Olfactory bulb comprises four layers from superficial to the deep viz: 1) the olfactory nerve layer (ONL), 2) the glomerular layer (GL), 3) the mitral cell layer (MCL) and 4) the internal cell layer also called as granular cell layer (GCL) (Khan et al., 1998, 1999; Bhute et al., 2003; Singru et al., 2003; Bhute et al., 2007; Baile et al., 2008; Baile and Patle, 2011) same pattern is observed in N. notopterus. In the OB, ruffled cells are observed surrounding mitral cells which are also reported in the goldfish (Kosaka, 1980; Kosaka and Hama, 1981; Zippel et al., 1999). Fibers of the olfactory receptor neurons (ORNs) extend caudally over the olfactory nerve, penetrate the bulb from anterior side, spread along the periphery of bulb and synapses with the dendrites of mitral cells forming glomeruli which are clearly demonstrated in N. notopterus as in other teleosts (Bhute et al., 2007; Baby et al., 2000; Khan et al., 1999; Baile and Patle, 2011). Glomeruli are histologically distinct units that serve as the basic modules in information processing (Shepherd, 1994) and as a relay station to several higher brain areas (Satou, 1992). Axons of the mitral cells and ruffled cells run through the OT and terminate on various telencephalic areas (Satou, 1992). Same pattern of organization is observed in our study. In the olfactory bulb of N. notopterus, on the ventromedial and dorsomedial side, giant cells of the nervus terminalis have been identified. These ganglion cells are also noted in L. punctatus (Bass, 1981), goldfish (Stell et al., 1984), C. batrachus (Khan et al., 1998, 1999), C. mrigala (Biju et al., 2003), O. mossambicus (Singru et al., 2003), L. rohita (Bhute et al., 2007) and in C. gachua (Baile and Patle, 2011). The spatial distribution of ciliated receptor neurons (ORNs) extend caudally over the olfactory organ in the round goby, Neogobius melanostomus (Teleostei: Gobiidae). Journal of Morphology, 257: 62-71.

REFERENCES

© 2014| Published by IJLSI