Magnetized Inhomogeneous Plane Symmetric Cosmological Model in Bimetric Theory of Relativity

Deo SD*1 and Ronghe AK2

1Department of Mathematics, N.S. Science & Arts College, Bhadrawati, Dist. Chandrapur (M.S.) 442 902, India
2Department of Mathematics, S. S. L. Jain P. G. College, Vidisha (M.P.) India

*Corresponding author Email: - s_deo01@yahoo.in

ABSTRACT

Plane symmetric inhomogeneous cosmological model for electromagnetic field is studied in the frame work of Rosen's bimetric theory of relativity and have obtained the vacuum solutions for the model.

Keyword: - Electromagnetic field, Cosmological model, Bimetric relativity.

1. INTRODUCTION

An alternative theory of gravitation, called the bimetric theory of gravitation, was proposed by Rosen (1973) to modify the Einstein’s general theory of relativity by assuming two metric tensors, a Riemannian metric tensor g_{ij} and a background metric tensor γ_{ij}. The metric tensor g_{ij} determines the Riemannian geometry of the curved space-time, here g_{ij} has the same importance as in the Einstein theory of relativity and it interacts with matter. The background metric tensor γ_{ij} refers to the geometry of the empty (free from matter and radiation) universe and describes the inertial forces. This metric tensor γ_{ij} has no physical importance but γ_{ij} appears in the field equations of Rosen’s Bimetric relativity. Therefore γ_{ij} interacts with γ_{ij} but not directly with matter. One can regard γ_{ij} as giving the geometry that would exist if there were no matter. Thus at every point of space - time, there are two line elements.

$$ds^2 = g_{ij} \, dx^i \, dx^j$$(1.1)

$$d\sigma^2 = g_{ij} \, dx^i \, dx^j$$(1.2)

The field equations of Rosen's bimetric theory of relativity are

$$K_{i}^{j} = N_{i}^{j} - \frac{1}{2} \, NKg_{i}^{j} = -8 \pi kT_{i}^{j}$$(1.3)

Where, $N_{i}^{j} = \frac{1}{2} \gamma^{\alpha\beta} \left[g^{h} \, g_{hi\alpha} \right]_{\beta}$(1.4)
K = \sqrt{g}, \text{ where } g = \det(g_{ij}) \quad \cdots (1.5)

\& \gamma = \det(Y_{ij}), \ N = N^x \quad \cdots \cdots \cdots \cdots (1.6)

Vertical bar (|) denotes \(\gamma \)-covariant differentiation with respect to \(Y_{ij} \) & \(T^i_i \) is the energy momentum tensor of the matter field.

Rosen (1973; 1974; 1980); Yilmaz (1975); Israelit (1981); Karade (1980); Mohanty and Sahoo (2003); Katore (2006); Deo (2012; 2003) are some of the eminent authors who have studied several aspects of bimetric theory of relativity.

In particular, Reddy and Venkateswarlu (1988), Reddy and Rao (1998) have established the non-existence of spatially homogenous & isotropic cosmological model of Bianchi types and Kantowski-Sachs models in bimetric theory of relativity when the matter is taken either perfect fluid or cosmic string dust. Now a days, there are a lot of keen interest in studying cosmological models in the context of bimetric theory of relativity. The purpose of Rosen’s bimetric theory is free from the singularities that occur in general relativity.

It is interesting to note that magnetic field plays a significant role at cosmological model. In this work, we have investigated the inhomogeneous plane symmetric model for electromagnetic field in the context of bimetric theory of relativity & observed that the electromagnetic field does not exist in this theory. Hence resulting space time represents vacuum cosmological model.

2. METRIC AND ENERGY MOMENTUM TENSOR

We consider an inhomogeneous plane symmetric metric in the form

\[ds^2 = A (-dt^2 + dz^2) + B dx^2 + dy^2 \quad \cdots (2.1) \]

Where A, B are function of \((z, t)\)

The background metric in the form

\[d\sigma^2 = -dt^2 + dx^2 + dy^2 + dz^2 \quad \cdots \cdots (2.2) \]

Here the energy momentum tensor \(E_{ij} \) for the electromagnetic field is given by

\[E_{ij} = \frac{1}{4\pi} \left[-F_{ir}F^r_j + \frac{1}{4} g_{ij} F_{ab} F^{ab} \right] \quad \cdots (2.3) \]

Where \(E_{ij} \) is the electromagnetic field and \(F_{ij} \) Maxwell electromagnetic field tensor.

In co-moving coordinate system the magnetic field is taken along \(X \)-direction. We assume that the only non-vanishing component element to magnetic field tensor \(F_{ij} \) is \(F_{23} \). Hence, due to assumption of infinite electrical conductivity \(F_{23} = F_{24} = F_{34} = 0 \) the first set of Maxwell’s equation \(F_{[ij,k]} = 0 \) lead to the \(F_{23} = constant = H \), from (2.3) with (2.1)

We obtained \(E_1^1 = -E_2^2 = -E_3^3 = E_4^4 = \frac{H^2}{8\pi AB} \)

In co-moving coordinate the field equation (1.3) with the equation (2.1) & (2.3) we get

\[\left(\frac{A'}{A} - \frac{A^2}{A^2} \right) - \left(\frac{\dot{A}}{A} - \frac{\dot{A}^2}{A^2} \right) = 2k \frac{H^2}{AB} \quad \cdots (2.4) \]

\[\left(\frac{A'}{A} - \frac{A^2}{A^2} \right) - \left(\frac{\dot{A}}{A} - \frac{\dot{A}^2}{A^2} \right) = -2k \frac{H^2}{AB} \quad \cdots (2.5) \]

\[\left(\frac{B'}{B} - \frac{B^2}{B^2} \right) - \left(\frac{\dot{B}}{B} - \frac{\dot{B}^2}{B^2} \right) = -2k \frac{H^2}{AB} \quad \cdots (2.6) \]

\[\left(\frac{B'}{B} - \frac{B^2}{B^2} \right) - \left(\frac{\dot{B}}{B} - \frac{\dot{B}^2}{B^2} \right) = 2k \frac{H^2}{AB} \quad \cdots (2.7) \]

Where,

\[A' = \frac{\delta A}{\delta z^2}, \quad \dot{A} = \frac{\delta A}{\delta t} \]

\[A' = \frac{\delta^2 A}{\delta z^2}, \quad \dot{A} = \frac{\delta^2 A}{\delta z^2} \quad \text{etc.} \]

Using equation (2.4) to (2.7) we have,

\[H=0 \]

i.e. i.e. \(F_{23} = 0 \) \quad \cdots \cdots \cdots \cdots \cdots (2.8)

Which gives us inhomogeneous plane symmetric cosmological model does not accommodate electromagnetic field.
3. VACUUM COSMOLOGICAL MODEL

By using (2.8) in equation (2.4) to (2.7), we obtained

\[
\frac{A^*}{A} - \frac{A^2}{A^2} - \frac{\dot{A}}{A} = 0 \quad \ldots (3.1)
\]

\[
\frac{B^*}{B} - \frac{B^2}{B^2} - \frac{\dot{B}}{B} = 0 \quad \ldots (3.2)
\]

From Eqns (3.1) to (3.2), we get

\[
A = \exp(k_1 z + k_2 t) \quad \ldots (3.3)
\]

\[
B = \exp(k_3 z + k_4 t) \quad \ldots (3.4)
\]

Where \(k_i \)'s \ are constants of integration.

The corresponding vacuum cosmological model can now be written in the form by using eq. (3.3) and (3.4) in eq. (2.1) we get

\[
ds^2 = \exp(k_1 z + k_2 t)(k_1 z + k_2 t) + \\
\exp(k_1 z + k_2 t)(k_3 z + k_4 t) \quad (3.5)
\]

And it is interesting to note that the model (3.5) is free from singularity at \(t = 0 \).

CONCLUSION

In the present work, we have investigated the inhomogeneous plane symmetric model for electromagnetic field distribution in the frame work of Rosen’s bimetric theory of gravitation.

This clearly represented a vacuum cosmological model, which is free from singularity at \(t = 0 \).

ACKNOWLEDGEMENT

Dr. S. D. Deo. acknowledges UGC, New Delhi, India for financial assistance to carry out the minor research project [NO.F=47-1819/2012(WRO)].

REFERENCES

9) Mohanty G, Sahoo PK, Mishra B. On Bianchi Type I Mesonic Cosmological Model In bimetric Theory".

© 2014 | Published by IRJSE