Cloning the sterol carrier protein 2 genes of Japanese toad (Bufo japonicus formosus) and Chinese toad (Bufo gargarizans) and its tissue expression analysis

Yu-Cheng JI3,#, Hui ZHU Ge2,#, Shan-Shan ZHANG3, Shu-Fang ZHANG2, Xian-Yu Yang1,*

1. College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Lin’an 311300, China
2. The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Lin’an 311300, China
3. School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Lin’an 311300, China

Abstract: In this study, to clarify the bioactive polypeptides included in the skins and secretions of Bufo, we screened the Japanese toad (Bufo japonicus formosus) skin cDNA library by colony polymerase chain reaction (PCR), and obtained a transcript of 1 075 bp consisting of 137 bp 5′ untranslated region (UTR), 515 bp 3′ UTR and a 423 bp open reading frame (ORF) encoding a polypeptide of 140 amino acid residues (GenBank accession number: KF359945). Homolog analysis showed a 70%–96% homology with sterol carrier protein-2 (SCP-2) present in other animals, which is implicated in lipid metabolism of other organisms. The gene SCP-2 of Chinese toad (B. gargarizans) was cloned from a first strand cDNA of Bufo skin (GenBank accession number: KF381341) via PCR, whose encoding polypeptide has only one amino acid difference from that of Japanese toad. Tissue distribution analysis showed that SCP-2 expressed in all organs tested, though in the liver and spleen it manifested lower expression than in other organs. These findings might indicate SCP-2 being one of the active ingredients in toad skin. These findings may in turn have implications for further drug development from traditional Chinese medicine sources.

Keywords: Bufo gargarizans; Bufo japonicus formosus; SCP-2 cDNA cloning; Tissue expression

Received: 17 February 2014; Accepted: 25 March 2014
Foundation items: This study was supported by the National Natural Science Foundation of China (31071181, 31372149) and the Students’ Innovative Training Program of ZAFU (20120207, 20120213)
#Authors contributed equally to this work
*Corresponding author, E-mail: yangxy78@zafu.edu.cn

Amphibian skin and their secretions have been shown to contain large amount of biologically active compounds, suggesting a new potential source for drug discovery (Clark, 1997; Lai et al, 2002a, 2004; Novković et al, 2012; Rash et al, 2011; Zhao et al, 2014). The potential for novel therapeutics derived from these tissues is not unexpected; skin from the Bufo toad (Chan’pi), its cortex (Chan’yi) and secretions (Chan’su) have long been important components included in many prescriptions of traditional Chinese medicine (TCM) used in clinical treatments of several diseases, especially tumor control (Efferth et al, 2009; Liu et al, 2009; Tong, 2011; Xin et al, 2012). Previous reports showed that cinobufocini injection (water soluble extracts of toad skin) possessed excellent anti-tumor curative effects (Qi et al, 2010, 2011; Zhou et al, 2009), likely due to their unique polypeptides (Wu et al, 2012). Despite these promising findings, little has been done to advance the use of the active compounds in toad skin, especially in China.

China itself is in rich of amphibian species and has a long history of developing traditional medicine from unorthodox sources. Similarly, China is up and coming player in the pharmaceuticals and drug development. The key challenge in leveraging these two advantages is first gaining a clearer understanding of the underlying genetic and molecular mechanisms in many traditionally used
Cloning the sterol carrier protein 2 genes of Japanese toad (Bufo japonicus formosus) and Chinese toad (B. gargarizans) and its tissue expression analysis

Kunming Institute of Zoology (CAS), China Zoological Society

Volume 35 Issue 5

MATERIALS AND METHODS

Experimental materials and reagents

The proprietary Japanese toad skin plasmid cDNA library held by the Japan Advanced Industrial Science and Technology (AIST, Tsukuba, Japan) was authorized for use by Zhejiang Agricultural and Forestry University (ZAFU) for research as part of a Material Transfer Agreement. Concerning this library, pSD64TR (3 250 bp) has been used as a vector, and EcoRI and XhoI as cloning sites. The upstream primer of the vector is SP6 primer (SCP-2-S: 5′-ATTTAGGTGACACTATAGAA-3′) and the downstream one is S.D.A. (5′-AGATCTCTCGAGTTTTTTTTTTTTTTTTTTT-3′, a self-designed primer complementary with the area encompassing the connection point of cDNA polyA tail and the downstream cloning site of XhoI) as primers. Following this process, the recombinant plasmids were collected and double enzyme digested with EcoRI and XhoI to further confirm positivity, and then sent for sequencing with vector primers SP6 and S.D.A.

B. japonicus formosus SCP-2 screening

Japanese toad cDNA screening was performed as described previously (Yuan et al, 2013). In brief, Japanese toad skin plasmid cDNA library was transformed into E. coli (DH5α), and colony PCR was performed using colony suspension as templates, and SP6 and XhoTT (5′-AGATCTCTCGAGTTTTTTTTTTTTTTTTTTT-3′, a self-designed primer complementary with the area encompassing the connection point of cDNA polyA tail and the downstream cloning site of XhoI) as primers. Following this process, the recombinant plasmids were collected and double enzyme digested with EcoRI and XhoI to further confirm positivity, and then sent for sequencing with vector primers SP6 and S.D.A.

B. gargarizans SCP-2 cloning

For SCP-2 cloning from Chinese toad, total RNA was extracted from its dorsal skin, and a first strand cDNA synthesized based on the manufacturer’s protocols. Meanwhile, based on the Japanese toad SCP-2 sequence, an upstream primer (SCP-2-S: 5′-CGTGGTCGTTACG TTATACAAG-3′) and a downstream primer (SCP-2-R: 5′-GAATAGGACACTATAGAA-3′) were designed for use in RT-PCR. The PCR product was ligated into a pGM-T vector and then sequenced with vector upstream primer T7 and downstream primer SP6.

Sequence Analysis

DNASTar/EditSeq was used to find the open reading frame (ORF) and deduce their encoding protein amino acid sequence. Potential phosphorylation sites were predicted via Net Phos 2.0. A further 17 SCP-2 protein sequences from other animals were downloaded by NCBI blast program (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and aligned with DNASTar/MegAlign. Phylogenetic tree based on SCP-2 amino acid sequences was constructed using the neighbor-joining method by MEGA5.1 (bootstrap with 1 000 replications).
**SCP-2 tissue expression analysis by RT-PCR**

Total RNA samples were extracted from different Chinese toad organs including brain, heart, lung, liver, spleen, kidney, stomach, intestines, fallopian tube and skin, and their first strand cDNA were synthesized as mentioned above. Samples of the different tissue were analyzed via PCR for SCP-2 expression using a reference gene of β-actin (upstream primer: 5’-TTGAGAC CTTCACACC-3’; downstream primer: 5’-CTTGATGT CACGCACAA-3’).

**RESULTS**

**SCP-2 screening and sequence analysis of *B. japonicus formosus***

Restriction enzyme digestion with EcoR I and Xho I showed one recombinant plasmid screened from Japanese toad skin plasmid cDNA library had a cDNA insert of about 1000 bp, which was later confirmed by sequencing analysis (Figure 1). The transcript is 1 075 bp consisting of 137 bp 5’UTR (untranslated region), 515 bp 3’ UTR and a 423 bp ORF encoding a polypeptide of 140 amino acid residues, which showed high homology with sterol carrier protein-2 (SCP-2) found in other animals. The clone we screened in the present study (named *B. japonicus formosus* SCP-2), has been deposited into GenBank (accession number: KF359945).

**SCP-2 cloning and sequence analysis of *B. gargarizans***

From Chinese toad skin first strand cDNA, a 920 bp transcript was obtained consisting of 22 bp 5’ UTR, 475 bp 3’ UTR and 423 bp ORF encoding a polypeptide consisting of 140 amino acid residues (Figure 2). The only difference between two *Bufo* SCP-2 proteins is that Thr130 in Chinese toad was substituted by Ser in the Japanese toad. This clone was designated as *B. gargarizans* SCP-2 and deposited into GenBank (accession number: KF381341).

**Phosphorylation site prediction of *Bufo* SCP-2**

From the analysis of phosphorylation site prediction, 10 potential sites (Ser10, Ser11, Ser19, Ser77, Ser79, Ser82, Ser91, Ser93, Thr66 and Tyr44) were found in both *Bufo* species (Table 1), suggesting that SCP-2 expression might be regulated by the upstream factors.

**Homology analysis of SCP-2 amino acids**

Phylogenetic analysis showed that two *Bufo* species had a homology as high as 96% with *Xenopus (Silurana) tropicalis* and 92% with *Xenopus laevis*, with lower homology ranging from 70% to 91% among 15 other animals (Figure 3). The phylogenetic tree we constructed showed 9 different mammals (*Homo sapiens*, *Bos taurus*, *Rattus norvegicus*, *Mus musculus*, *Mesoicterus auratus*, *Capra hircus*, *Camelus ferus*, *Lidtrone tridecrementus* and *Sus scrofa*) gathered in a branch, 5 different birds (*Gallus gallus*, *Falco peregrinus*, *Falco cherrug*, *Pseudopodoces humilis* and *Melopsittacus undulatus*) in a branch, 1 reptile (*Anolis carolinensis*) in another branch, 2 frogs (*X. laevis* and *X. Silurana tropicalis*) in a branch, 2 toads (*B. gargarizans* and *B. japonicus formosus*) in a branch, and 2 fish in a branch (Figure 4).

Figure 1  SCP-2 cDNA and its deduced amino acid sequence of *Bufo japonicus formosus*

Start and stop codons were enclosed by line box. —: Polyadenylation signal; =: Poly(A) tail.
Cloning the sterol carrier protein 2 genes of Japanese toad (*Bufo japonicus formosus*) and Chinese toad (*B. gargarizans*) and its tissue expression analysis

Figure 2  SCP-2 cDNA and its deduced amino acid sequence of *Bufo gargarizans*

Start and stop codons were enclosed by line box. 1: Upstream primer, SCP-2-S; 2: Downstream primer, SCP-2-R; —: polyadenylation signal.

DISCUSSION

Previous studies found that SCP-2 is involved in adjusting concentrations of cholesterol inside and outside cell membranes via activation of cholesterol hydrase, and participating in regulating cholesterol transport in the cell culture system (Kriska et al, 2010; Schroeder et al, 2000, 2007). Many human diseases—diabetes, arteriosclerosis, Zellweger, NPC disease and gallstones—have similarly
been found to have associations with abnormal expression of SCP-2 (Castelli, 1984; McLean et al, 1996). For example, NPC (Niemann-Picktype C) disease seems to be caused by NPC-peak C protein mutations, and a corresponding drop in liver SCP-2 expression was indicated (Schroeder et al, 2007). In diabetic mice models induced by streptozotocin, the level of SCP-2 in the liver was reduced 60%−90%, alongside a 60% reduction in ovarian SCP-2 (McLean et al, 1996). SCP-2 expression is also related to the formation of cholesterol calculus (Cui et al, 2011).

In the present study, our successful cloning of sterol carrier protein-2 (SCP-2) genes from both B. gargarizans and B. japonicus formosus (Figures 1, 2) indicated that SCP-2 expressed in toad skin as well as in other organs (Figure 5) has a high homology with that in other animals (Figure 3, 4). Due to the function of SCP-2 in adjusting lipid metabolism in numerous animal species and many SCP-2 expression-related disorders among humans, it may be reasonable to predict that SCP-2 is one of potentially several important ingredients within toad skin.

Our study extends the basic knowledge necessary to assess the potential for Bufo skin and other organs for potential drug development. Previously, numerous reports summarized several descriptions on the clinical efficacy of Chan’su, such as detoxification, analgesia, anti-inflammation, anti-diarrheal, and antitumor, etc. (Liu et al, 2009; Xin et al, 2012). Curiously though, we found that SCP-2, as a potentially important element in toad skin, is largely involved in adjusting lipid metabolism. However, few reports have ever noted the use of Bufo skin in treating lipid metabolism related diseases, aside from an old description concerning Chan’su that pointed out that administration of the medicine could make the symptoms of stasis and stagnation disappear in “BenCaoHuiYan”. This reference itself is rather intriguing, given that it appears in a Ming Dynasty era
book written by Zhu-mo NI published in 1624. Presuming our finding survive replication and further targeted studies are conducted to answer some of the remaining questions this research poses, our present results offer a potentially novel way of looking at cholesterol-related disease therapeutics using *Bufo* origin materials.

References


