Plants, Animals and Humans with Iron Free Water

Dr. Bhartendu Ajay

Department of Botany,
Bhupendra Narayan Mandal University, Madhepura, (B.R.)

(Received 05 October, 2013, Accepted 20 November, 2013)

ABSTRACT: Water is the greatest gift of nature and necessity of living organisms. Water is regarded as an universal solvent because more things can be dissolved in water than in any other liquid. Plants require iron at the source from the soil in the form of ferric salts to perform their functions for the synthesis of chlorophyll and formation of carotenoids. Animals especially humans obtain iron at the source of human diet. Though iron in traces is too important means of our life but at some places excessive iron is found in water causing serious problems.

The method of removal of iron from water consists in oxidation of Fe$^{2+}$ to Fe$^{3+}$ metal and its precipitation as Fe(OH)$_3$. If iron is present in water as hydrocarbonate, it can be removed by aeration. Iron can be removed from water by a mixed coagulant consisting of sodium aluminate and ferric chloride (Molar ration, NaAlO$_2$ to FeCl$_3$ is 1:1). Another method to remove iron is to pass water through a bed of highly dispersed suspension of chalk and aluminium hydroxide. Ferric iron can be removed from water by cation exchange method. The removal of iron from subsoil sources of filtration is combined with one of the preliminary methods of purification of water, such as simplified aeration, adding oxidants with or without aeration.

INTRODUCTION

Water is the greatest gift of nature and necessity of living organisms. Hydrosphere, the component of environment, covers more than 75 percent of the earth’s surface either as oceans (salt water) or as fresh water. Water is regarded as an universal solvent because more things can be dissolved in water than in any other liquid. The inorganic compounds are mostly soluble in water and also dissociate to form electrically charged particles, called ions. It is probable that all natural elements are soluble in water at least in trace amounts, and they are all found in natural water at some place or the other on the earth’s surface.

Importance of iron to living organism

Plants require 10-1500 ppm of iron at the source from the soil in the form of ferric salts to perform their functions for the synthesis of chlorophyll and formation of carotenoids, as a constituent of cytochromes activating a number of enzymes. Iron deficiency in plants shows symptoms of interveinal chlorosis, localized or generalized chlorosis etc. [4]. Animals specially humans obtain iron at the source of human diet like liver meat, green vegetables, eggs, whole grains, legumes, nuts etc. meant for major functions as an inactive site of many redox enzymes and electron carriers; haemoglobin; myoglobin etc. Iron deficiency in human diet leads to deficiency of haemoglobin because iron is necessary for the production of haemoglobin; this disease is called microcytic anaemia.

Pregnant and lactating mothers need additional dose of iron for the foetus and the infants. Women of child bearing age also require extra dose of iron because of loss of blood at each menstrual discharge [3].

Excessive Iron in Water.

Though iron in traces is too important means of our life but at same places excessive iron is found in water causing serious problems like

i. Yellowing of teeth, clothes, cooking pots, toilets and bathroom floors etc,

ii. Loss of appetite,

iii. Stomach disorders,

iv. Excessive weakness human males in comparison to females etc,

v. Damage of liver causing jaundice,

vi. Ulcer of intestine.
EXPERIMENTAL

With the purpose to remove iron from water- oxidation, precipita
tion, aeration, coagulation, filtration and autocatalytic process etc. being applied separately as well as steps in
combination.

Removal of Iron from Water

The method of removal of iron from water consists in oxidation of Fe$^{2+}$ to Fe$^{3+}$ metal and its precipitation as
Fe(OH)$_3$.

If iron is present in water as hydrocarbonate, it can be
removed by aeration. This salt is hydrolysed in the
following way.

$$Fe(HCO_3)_2 + 2H_2O \rightarrow Fe(OH)_2 + 2H_2CO_3$$

$H_2CO_3 \leftrightarrow H_2 + CO_2$

CO$_2$ is removed from water by aeration and, therefore,
hydrolysis can be completed to the end. Ferrous
hydroxide is oxidized by atmospheric oxygen to Fe(OH)$_3$.

$$4Fe(OH)_2 + 2H_2O + O_2 \rightarrow 4Fe(OH)_3$$

This method can be used to reduce the iron content up
to 0.1 to 0.3 mg/litre. Humans interfere with the
precipitation of iron, because they act as protective
 colloids with respect to Fe(OH)$_2$. In such cases, water is
treated with chlorine, which oxidizes Fe$^{2+}$ iron to Fe$^{3+}$
iron and destroys humans.

FeSO$_4$ is removed from water by treating it with lime.

$$FeSO_4 + Ca(OH)_2 \rightarrow Fe(OH)_2 + CaSO_4$$

$$4Fe(OH)_2 + 2H_2O + O_2 \rightarrow 4Fe(OH)_3$$

Iron can be removed from water by a mixed coagulant
consisting of sodium aluminate and ferric chloride
(Molar ration, NaAlO$_2$ to FeCl$_3$ is 1:1). The
concentration of residual iron does not exceed 0.3
mg/litre. Iron present in organic and inorganic
compounds can be removed by this method.

Another method to remove iron is to pass water through
a bed of highly dispersed suspension of chalk and
aluminium hydroxide. The iron salts are converted into
ferrous carbonate by chalk.

$$FeSO_4 + CaCO_3 \rightarrow FeCO_3 + CaSO_4$$

FeCO$_3$ is hydrolysed into ferrous hydroxide.

$$FeCO_3 + 2H_2O \rightarrow Fe(OH)_2 + H_2CO_3$$

The Fe$^{2+}$ iron is then oxidized to Fe$^{3+}$ iron.

$$4Fe(OH)_2 + 2H_2O + O_2 \rightarrow 4Fe(OH)_3$$

The overall reaction can be represented as,

$$4CaCO_3 + 4FeSO_4 + 6H_2O + O_2 \rightarrow 4Fe(OH)_3 + 4CaSO_4 + 4CO_2$$

Ferric hydroxide is retained in the suspended filter
which contains 16 parts by weight of Al(OH)$_3$ per 100
parts of CaCO$_3$. About 95% of iron present in water can
be removed by this method.

Ferric iron can be removed from water by the cation
exchange method. For example, when water passes
through calcium form of cation exchanger, the
following reaction occurs.

$$3CaR + Fe_2(SO_4)_3 \rightarrow Fe_2R_3 + 3CaSO_4$$

The iron content can be decreased by this method
upto 0.05 mg/litre and even lower.

It has also been observed that ferrous iron is
converted into ferric iron when passed through a
granular filter (without preliminary oxidation of iron).

The process is accompanied by the formation of a ferric
xide film on the grains of the filter, which acts like a
catalyst. Hence water is purified from iron by filtration
and is an autocatalytic process.

There is, however, no universal method to remove
iron from sub soil water, and the selection of a
particular method depends on the analysis of water
taken from the source.

The removal of iron from sub-soil sources by
filtration is combined with one of the preliminary
methods of purification of water, such as simplified
aeration, adding oxidants with or without aeration.

The simplified aeration consists in that water falls on
the filter from a height of 0.5 to 0.6 m. The method is
convenient for water containing upto 10 mg/litre of total iron, of which the ferrous iron content should not
be less than 70%, because no film is formed on the
grains in its absence. [Ref.6]

The investigations have shown that only the presence
of ferrous iron in water delivered on the filter provides
the conditions under which the film is formed to ensure
the high iron-removal effect.

DISCUSSION AND CONCLUSION

WHO International Standard recommended a
permissible limit of 0.3 mg/L and an excessive limit of
1.0 mg/L iron in drinking water. Iron tends to
precipitate as hydroxides and stain laundry and
porcelain fixture. Iron oxides form adherent coatings
and lead to tube failures. Heavy metal like iron in water
acts as cumulative poisons and accumulates in the
body of living organisms causing chronic diseases.
Iron causes skin and stomach diseases in man. Intestine
is unable to absorb suspended iron of water as it is
found in the form of ferrous ions. Thus removal of iron
from water is necessary for easy consumption and
assimilation.
ACKNOWLEDGEMENT

Author is thankful to Mr. Sanmukh Bharti (B.Tech.) and Mr. Chandrajit Kumar (I C T school co-ordinator, +2 Project Girls High School Bastaul, Katihar) for their continuous support of internet service and computerization of paper.

REFERENCES

Sharma Dr. B.K ; Water pollution; 2001, Publisher- Krishna Prakashan Media (P) Ltd., Meerut-01 (U.P.).
Rastogi V.B. ; A complete course in I.Sc Biology Vol-II (P I-112, 120, P II-69, 94).

Climatological Tables of observation in India, IMD, 1931-1960.
Matthews Philip; Advanced Chemistry; Published by Foundation Books, New Delhi-110002; Printers- Cambridge University Press, p 558-566.