
Universiti Sains Islam Malaysia

Nilai, Malaysia

ala.alaker@yahoo.com
1
, norita@usim.edu.my

2
, nurlida@usim.edu.my

3

ABSTRACT

KEYWORDS

Measurement; Security Metrics;

Misuse cases; Security Requirements;

Software Security.

1 INTRODUCTION

Web applications are employed in a

wide variety of contexts to support

many daily social activities.

Unfortunately, the tremendous rise in

online applications has been

accompanied by a proportional rise in

the number and type of attacks against

them. Web applications are

continuously reported to be vulnerable

to attacks and compromises. According

to a recent analysis conducted by

Symantec Inc [1], vulnerabilities and

security breaches on enterprises are

increasing, with web application

attacks continuing to be a favoured

attack vector. Furthermore, a report by

WhiteHat security has found that 8 out

of 10 web applications are vulnerable

[2]. These reports indicate that even

present-day web applications are not

free from vulnerabilities. In security

engineering, vulnerabilities result from

defects or weaknesses that are

inadvertently introduced at the design

and implementation stages of the

development life cycle that can be

exploited by attackers to harm the

application and its asset [3]. Therefore,

security needs to be considered and

measured from the early stage of the

development life cycle.

Mellado et al. [4] believe in the

particular importance of security

requirements engineering, which

provide techniques and methods to

handle security at the early stage of the

software development lifecycle. A

survey to identify and describe

concrete techniques for eliciting

security requirements showed that a

misuse case is often considered an

Security Measurement Based On GQM To Improve Application Security During

Requirements Stage

Ala A. Abdulrazeg
1
., Norita Md Norwawi

2
., Nurlida Basir

3

Faculty of Science and Technology

Developing secure web applications that

can withstand malicious attacks requires a

careful injection of security considerations

into early stages of development lifecycle.

Assessing security at the requirement

analysis stage of the application

development life cycle may help in

mitigating security defects before they

spread their wings into the latter stages of

the development life cycle and into the

final version of product. In this paper, we

present a security metrics model based on

the Goal Question Metric (GQM)

approach, focusing on the design of the

misuse case model. Misuse case is a

technique to identify threats and integrate

security requirements during the

requirement analysis stage. The security

metrics model helps in discovering and

evaluating the misuse case models by

ensuring a defect-free model. Here, the

security metrics are based on the OWASP

top 10-2010, in addition to misuse case

modeling antipattern.

211

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

Table1. Cost of fixing defects [30]

important part of the requirement stage

[5]. Misuse cases represent security

threats that the attacker might interact

with to breach security and cause harm

to the system. Misuse cases are created

by extending the use case model to

provide a systematic way for

identifying system functions, possible

threats, and required countermeasures

in one consistent view. The misuse

cases model must be accurately

modelled, because if security defects

and vulnerabilities are discovered late

in the development, the cost of fixing

them escalates significantly as shown

in table 1 [30].

A study on security improvement

program suggested that measurement

and metrics must be included earlier in

the development processes [8].

Measuring security at the requirement

stage, focusing on misuse case model

could mitigate security defects before

they reach the finalised product. This

paper proposes a new set of security

metrics model that quantifies security

at an early stage of web application

development life cycle, namely the

requirement stage. The security metrics

are defined using the Goal, Question,

Metrics approach. The proposed

metrics model is misuse case-centric to

ensure that the developed misuse case

models are defect-free, and mitigate

most well-known web application

security risks. The security metrics

model is defined by adopting the

antipatterns proposed by [9] to ensure

the modelled misuse cases are defect-

free. The model is based on the

prominent top 10-2010 web application

security risks OWASP [10] to ensure

the security use cases thoroughly

address these risks.

The rest of the paper is organized as

follows: Section 2 presents the

background of the work which

discusses the importance of security

metrics and then presents the concept

of the misuse case model. Section 3

presents the proposed security metrics

model. In section 4, related work has

been discussed. Finally, section 5

suggests future work and explains the

conclusions.

2 BACKGROUND

2.1 Why Security Metrics

Metrics are defined as standards of

measurement. Measurement is a

process of quantifying the attributes of

software to describe them according to

clearly defined rules [11]. Chew et al.

[12] defined measurements as the

process of data collection, analysis, and

reporting. The results of data collection

are called ‘measures’. Lord Kelvin is

known to have said, “If you cannot

measure it, you cannot improve it.

When you can measure what you are

speaking about, and express it in

numbers, you know something about

it; but when you cannot measure it,

when you cannot express it in

numbers, your knowledge is of a

meagre and unsatisfactory kind”[13].

The analysis and interpretation of

appropriate measures helps diagnose

problem and identify solutions during

the development of software, which

assists in reducing defects, rework, and

cycle time [7].

According to Wang et al. [6] we cannot

improve security if we cannot measure

it. Security metrics are considered

effective tools that allow information

security experts to characterize and

evaluate the effectiveness of security

and the levels of systems, products,

and processes in order to address

security issues and facilitate

212

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

improvements [14]. Security metrics

are used for decision support and these

decisions are actually risk management

decisions aimed at mitigating and

cancelling security risks. Defining

metrics based on goals has proven

successful in guaranteeing relevant

measurements, as it gives purpose to

the metrics [15].
The Goal Question Metric approach is

a goal-oriented approach which

provides a framework for metrics

development [15]. The GQM approach

was originally developed by Basili and

Weiss [16], and expanded by Rombach

[17]. Basili [18] stated that the Goal

Question Metric approach represents a

systematic approach for integrating

goals with models of the software

processes, products and quality

perspectives of interest, based upon the

specific needs of the project and the

organization. An example of GQM is

illustrated in figure 1 [29].

As illustrated in figure 1, the goal

Question Metric approach focuses on

defining measurable goals (conceptual

level) for products, processes, and

resources with respect to quality issue

perspectives of interest. Then, these

goals are refined into questions

(operational level) to characterize the

way the assessment/achievement of

these goals is going to be performed.

Once the goals are refined into a list of

questions, metrics are identified

(Quantitative level) to provide a

quantitative answer/information to

each question in a satisfactory way

[17].

2.2 Misuse Case Modelling

Ensuring the set of security

requirements obtained is complete and

consistent is a very important task

because the right set of security

requirements will lead to the

development of secure software,

whereas the wrong requirements can

lead to a never-ending cycle of security

failures [19]. Misuse case is a useful

technique for eliciting and modelling

functional security requirements and

threats at the requirement stage.

Use case diagrams have proven

effective during requirements

engineering for selecting functional

requirements, but offer limited support

for selecting security requirements

[20]. McDermott and Madison [21]

used the term ‘abuse cases’ to express

threats and countermeasures using the

standard use case notation. In their

approach, the authors kept the abuse

case in separate models. Later, Sindre

and Opdahl [22] extended the positive

use case diagrams by adding negative

use cases (misuses cases) to model

undesirable behaviour in the system

and misuser to model the attacker.

Extending the use case model with

misuse cases provides the ability to

regard system functions and possible

attacks with one consistent view,

which assists in describing security

threat scenarios which would threaten

the system assets, mitigating threats

and thus improving security. The

ordinary use case relationships such as

association, generalization, ‘include’

and ‘extend’ may also be used in

modelling of misuse cases. Sindre &

Opdahl [20] have refined the

relationships in misuse case modelling

by adopting threaten and mitigate

relationships as suggested by [23].

These two types of relationships

illustrate that a misuse case may

threaten a use case, while a security

use case might mitigate a misuse case.

Figure 1. The Goal Question Metrics approach

213

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

A security use case represents software

security requirements needed to protect

system assets from security threats.

The idea of security use cases as a way

of representing countermeasures is

presented by [24] and was adopted by

[20].

Figure 2 illustrates an example of a

misuse case diagram. In this figure

Account locked after N number of

unsuccessful authentication attempts is

a security use case added to protect

against the threat Guess user

authentication identified as a potential

misuse case that threatens the login

function.

3 SECURITY METRICS TO

IMPROVE MISUSE CASE

MODEL

In this work, we develop a security

metrics model to be applied at the

requirements stage. The proposed

security metrics model is misuse case-

centric and aims to discover and secure

security vulnerabilities and modeling

defects. It is significant to eliminate

modelling defects from the misuse case

model and improve security use cases

before those defects and weaknesses

find their way into the latter stages of

the development life cycle.

The GQM approach is used for a

structured and derivation of the

security metrics. The proposed security

metrics model is composed of two

main goals. The first goal is to improve

the quality of the developed misuse

case models by ensuring the models

are defect-free and do not contain any

incorrect and misleading information.

In order to achieve this goal, security

metrics are developed based on the

antipatterns specified by [9]. The

antipatterns are the poor modelling

decisions which result in low quality

misuse case models that can lead to

defects and harmful consequences in

the latter stages of development life

cycle [9]. The metrics have been scaled

so as to fit within the range 0 to 1 with

lower values considered a satisfactory

rating for the measurement.

Goal 1 To improve the modeling

quality of misuse case models by

identifying modeling defects.

Question 1.1 Do the misuse cases

correctly represent the application

vulnerabilities and are they consistent

with application security use cases?

Metrics 1.1.1 The ratio of the

number of misuse cases that do not

threaten the application to the total

number of misuse cases.

Consider a set of misuse cases in a

model as MC = {mc1 ,…, mcn} and the

non-threatening misuse cases as NMC

= {nmc1,…, nmcn} such that

MCNMC  . The metric is expressed as

follows, where RNMC stands for the

ratio of misuse cases that do not

threaten the application.

MC

NMC
RNMC 

(1)

Metrics 1.1.2 The ratio of the

number of unmitigated misuse cases

that threaten the application to the

total number of misuse cases.

Consider a set of misuse cases in a

model as MC= {mc1 ,…, mcn} and the

unmitigated misuse cases as UMC =

{umc1,…,umcn} such that MCUMC  .

The metric is expressed as follows,

where RUMC stands for the ratio of the

number of unmitigated misuse cases.

Figure 2. Misuse case diagram example

214

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

MC

UMC
RUMC 

(2)

Question 1.2 Are the functional

decompositions between misuse cases

correctly handled?

Metrics 1.2.1 The ratio of inclusion

misuse cases included once to the

total number of inclusion misuse

cases.

Consider a set of inclusion misuse

cases as IMC = {imc1,…, imcn} and the

inclusion misuse cases included once

as OIM = {oim1,…, oimn} such that

IMCOIM  . The metric is expressed as

follows, where ROIMC stands for the

ratio of inclusion misuse cases

included once.

IMC

OIM
ROIMC 

(3)

Metrics 1.2.2 The ration of

extension misuse cases extended

once to the total number of

extension misuse cases.

Consider a set of extension misuse

cases as EMC = {emc1,…, emcn} and

the extension misuse cases extended

once as OEM = (oem1,…, oemn) such

that EMCOEM  . The metric is defined

as follows, where RMEMC stands for the

ratio of extension misuse cases

extended once.











EMC

OEM
RM EMC 1

(4)

Metrics 1.2.3 The ratio of misuse

cases used as pre/post conditions of

other misuse cases to the total

number of misuse cases.

Consider a set of misuse cases as MC

= {mc1,…, mcn} and the misuse cases

used as pre/post conditions as PMC =

{pmc1,…, pmcn} such that MCPMC  .

The metric is expressed as follows,

where RPMC stands for the ratio of

misuse cases used as pre/post

conditions.

MC

PMC
RPMC 

(5)

Question 1.3 Are the misusers

presented and handled correctly in the

misuse case model?

Metrics 1.3.1 The ratio of the

number of the base misuse cases

associated to one misuser to the

total number of base misuse cases.

Consider a set of base misuse cases in

a model as MC= {mc1 ,…, mcn} and

the base misuse cases associated to one

misuser as OMM= {omm1,…,ommn}

such that MCOMM  . The metric is

expressed as follows, where RMMC

stands for the ratio of the number of

the base misuse cases associated to one

misuser.











MC

OMM
RM MC 1

(6)

The second goal of the security metrics

is to discover omitted security use

cases that mitigate known-security

vulnerabilities to ensure that the

developed misuse cases cover these

vulnerabilities. To achieve this goal

security metrics based on web

application security risks OWASP top

10-2010 [10] were developed. In this

work, three security risks were

analyzed; SQL injection, Cross Site

Scripting, and Broken Authentication

and Session Management.

Goal 2: To ensure that the elicited

security use cases cover the well-

known security vulnerabilities.

Question 2.1 What is the number of

misuse cases found?

Metric 2.1.1 The total

number of identified misuse cases [

TotalMUC].

215

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

Question 2.2 What is the number of

elicited security use cases?

Metric 2.2.1 The total

number of elicited security use

cases [TotalSUC].

Question 2.3 Are the security

requirements which have been defined

sufficient to mitigate well-known

security vulnerabilities?

Metric

2.3.1

The number of excluded

security requirements that

ensure input/output handling

[Xr1].

Is a specific encoding scheme defined

for all inputs?

Is a process of canonicalization applied

to all inputs?

Is an appropriate validation defined and

applied to all inputs, in terms of type,

length, format/syntax and range?

Is a whitelist Filtering approach is

applied to all inputs?

Are all the validations performed on the

client and server side?

Is all unsuccessful input handling

rejected with an error message?

Is all unsuccessful input handling

logged?

Is output data to the client filtered and

encoded?

Is output encoding performed on server

side?

Metric

2.3.2

The total number of excluded

security requirements that

ensure Authentication &

Authorization handlin [Xr2].

Is a complex password policies applied

in order to choose proper passwords?

Is the minimum and maximum length of

password defined?

Is the account automatically locked for

the specified period when a specified

number of consecutive unsuccessful

authentication attempts exceeded?

Is authentication error messages not

verbose and do not contain sensitive

information?

Is the option that remembers the

authentication credentials such as “Keep

me signed in” avoided?

Is user allowed to change his/her

password?

Is user allowed to create his/her own

secret questions and answers for the

option of password recovery?

Is CAPTCHA (Completely Automated

Turing Test To Tell Computers and

Humans Apart) applied?

Is all authentication decision performed

on the server side?

Is all authentication actions (e.g, Login,

logout, password change) logged?

Is re-authentication required when

performing critical operations?

Is user forced to change Password after

a specific period of time (expiration

periods)?

Is user credentials rejected without even

validation when the account is locked?

Is secure data transmission protocol

applied to secure credentials transfer

between client and server.

Metric

2.3.3

The total number of

excluded security

requirements that ensure

session handling [Xr3].

Is session identifier created on server

side?

Is new session identifier assigned to

user on authentication?

Is session identifier changed on re-

authentication?

Is logout option provided for all

operations that require authentication?

Is session identifier cancelled when

authenticated user logs out?

Is session identifier killed after a period

of time without any actions?

Is user’s authenticated session identifier

protected via secure data transmission

protocol?

216

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

Metric

2.3.4

The total Number of

excluded security

requirements that ensure

Error & Logging handling

[Xr4].

Is application has log file?

Is log control handled on server?

Is the application does not output error

messages that contain sensitive data?

Is all server failure and errors handled in

server and NOT deliver to user?

These metrics are implemented by

comparing the elicited security

requirements of the application during

the requirement stage to the stated

security requirements. These metrics

assess the threat of possible attacks on

the system. If a security requirement

has been excluded then a value of 1

will be given, and a value of 0 if it has

been considered.

Metric 2.3.5 The total

number of excluded security

requirements that put the system at

risk of possible attacks.






n

i

iSUC XrExR

1
(7)

ExRSUC stands for the summation of

the excluded security requirements,

and Xri represents the excluded

security requirements that put the

system at risk, where i {1, 2, ..n}.

Question 2.4 How vulnerable is the

application based on the stated

security requirements?

Metric 2.4.1 The ratio of the

number of included security

requirements to the total number of

stated security requirements.








 


SsR

ExRSsR
RV SUC

SUC 1

(8)

 SsR stands for the total number of

the stated security requirements. The

difference between SsR and ExRSUC

indicates the included security

requirements. RVSUC stands for the

ratio of the number of included

security requirements. The value of the

metrics ranges from 0 to 1. If RVSUC

converges to 0, that indicates many

stated security requirements have been

considered in the misuse case model.

The lower ratio is the satisfactory

rating for the measurement. The

security metrics model is illustrated

graphically in figure 3.

4 RELATED WORK

A number of related works have

already been done that introduce

security metrics, or mentioned how and

where to situate theses metrics in the

development life cycle of a system.

Nichols and Peterson [25] introduced a

metrics model based on OWASP top-

10 vulnerabilities and organized

according to the application’s life

cycle. The authors suggested that if the

organization seeks to improve the

overall application security, they must

focus on security of the web

application itself. The authors also

suggested that web application

developers need to be concerned about

the vulnerabilities that may exist in the

application. In this paper, the authors

stated that design-time metrics are

essential to the application

development because of their ability to

identify and characterize weaknesses

early in the application’s life cycle.

Mell et al [26] reported the Common

Vulnerability Scoring System (CVSS)

provides an open standardized tool to

measure the severity and risk of a

vulnerability discovered in a given

system. CVSS assists in prioritizing

these vulnerabilities to remediate those

that pose the greatest risk. Chowdhury

et al [27] defined a number of security

metrics that assess how securely a

system’s source code is structured. The

proposed metrics can be applied to

evaluate the robustness, secure

217

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

Q 1.3

Q 1.2

Q 1.1

M

1.1.1

G1

M

1.1.2

M

1.2.1

M

1.2.2

M

1.3.1

M

1.2.3

Q 2.4

Q 2.2

Q 2.1

M

2.1.1

G2

M

2.2.1

M

2.3.1

M

2.3.2

M

2.4.1

M

2.3.3

Q 2.3

 M

2.3.4

M

2.3.5

Figure 3. Graphical representation of the security metrics model based on GQM

information flow and secure control

flow in code structures. Wang et al [6]

described an approach to define

security metrics based on

vulnerabilities included in software

systems and their impact on software

quality. The proposed security metrics

measure the severity level and the risk

of a representative weakness of

software that causes most of the

vulnerabilities to be exploited by the

attackers, taking into consideration the

time of occurrences of vulnerabilities

at the software product level.

Alshammari, et al [28] proposed a set

of security metrics to measure

information flow of object-oriented

designs based on the analysis of quality

design properties presented in the

Quality Model for Object-Oriented

Design. These properties include:

composition, coupling, extensibility,

inheritance, and design size. The

author studied each property and its

relevance to designing secure software

to define the security metrics.

5 CONCLUSIONS

In today’s world, security is an

important aspect of web application. A

prudent approach for developing

security web applications is to

integrate security from the early stages

of development, specifically at the

requirements stage. This paper

provides a security metrics model to

examine the misuse case diagram to

ensure it is defect-free, and covers and

mitigates known-security risks and

vulnerabilities, so as to develop a

secure system. The proposed security

metrics give an indication of where the

security defects might occur. Future

works may consider conducting

experiments to evaluate and

demonstrate the usefulness and

effectiveness of the proposed security

metrics for the system development.

The effectiveness of the approach

could be validated by evaluating the

resulting misuse case diagram to fix

defects in the original model and

threats that are added to the model that

could jeopardize the application.

6 ACKNOWLEDGMENT

The first author gratefully

acknowledges the Ministry of Higher

Education in Libya for sponsoring his

PhD studies. The authors would like to

acknowledge the support of the Faculty

of Science and Technology at

Universiti Sains Islam Malaysia for

funding this work through the project

No.PPP/FST-1-15711.

218

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

7 REFERENCES

[1] Symantec Inc. “Symantec Global Internet

Security Threat Report Trends for 2009”.

Symantec Global Internet Security Threat

Report. Volume XV,p.7 (2010).

[2] J.Grossman,”10 important facts about

website security and how they impact your

enterprise”. WhiteHat Security .p.3

(2011).

[3] G. Elahi, E. Yu, and N. Zannone, “A

vulnerability-centric requirements

engineering framework: analyzing security

at countermeasures, and requirements

based on vulnerabilities", Requirements

Engineering, ‘. pp. 41-62 (2010).

[4] D. Mellado, C. Blanco, L. S´anchez and E.

FernadezMedina,” A systematic review of

security requirements engineering”.

Computer Standards & Interfaces. pp.

153-165 (2010).

[5] I. Tondel, M. Jaatun and H. Meland,

“Security requirements for the rest of us:

A survey”. IEEE Software, Vol.25. pp.20–

27 (2008).

[6] J. Wang, H. Wang, M. Guo and M. Xia,

“Security metrics for software systems”

.In Proceedings of the 47th Annual

Southeast Regional Conference, South

Carolina (2009).

[7] J. McCurley, D. Zubrow and C. Dekkers,

“Measures and Measurement for Secure

Software Development” Software

Engineering Institute (2008).

[8] D. Taylor and G. McGraw,” Adopting a

software security improvement program”.

IEEE Security & Privacy. pp. 88-91

(2005).

[9] M. Elattar, "A framework for improving

quality in misuse case models", Business

Process Management Journal.pp.168 -196

(2012).

[10] J. Williams and D. Wichers, “ OWASP

top 10 – 2010” Technical report, The open

web application security project

(OWASP) (2010).

[11] C. Kaner, and W. Bond, “ Software

Engineering Metrics: What Do They

Measure and How Do We Know”. In:

Proce 10th International Software Metrics

Symposium, Chicago, USA. pp 1-12

(2004).

[12] E. Chew, S. Marianne, S. Kevin, B.

Nadya, B. Anthony and R. Will,

“Performance measurement guide for

information security”. Research Technical

Report, NIST National Institute of

Standards and Technology, Special

Publication 800-55. July (2008).

[13] S. Bellovin, “On the Brittleness of

Software and the Infeasibility of Security

Metrics”. IEEE Security & Privacy. pp. 96

(2006).

[14] A. Wang, “Information security models

and metrics”. In: Procs of the 43rd annual

Southeast regional conference – VOL: 2,

NY, USA. pp.178-184 (2005).

[15] B. Patrik and J. Per, “A Goal Question

Metric Based Approach for Efficient

Measurement Framework Definition”. In:

Proc of the 2006 ACM/IEEE international

symposium on Empirical software

engineering. Rio de Janeiro. pp 316 – 325

(2006).

[16] V. Basili and D. Weiss, “A Methodology

for Collecting Valid Software Engine-

ering Data”, IEEE Tram. Software

Engineering. Vol.10, No.6. pp.728-738

(1984).

[17] V. Basili, G. Caldiera and D. Rombac,

“Goal Question Metric Paradigm”,

Encyclopedia of Software Engineering,

Vol. , pp. 528-532 (1994).

[18] V. Basili, "Software Modeling and

Measurement: The Goal Question Metric

Paradigm," Computer Science Technical

Report Series , University of Maryland,

College Park, MD (1992).

[19] K. Beznosov and B. Chess “Security for

the rest of us: An industry perspective on

the secure-software challenge”. IEEE

Software, Vol. 25.pp.10–12 (2008).

[20] G. Sindre and A. Opdahl,”Eliciting

Security Requirements with Misuse

Cases”, Requirements Engineering

Journal.pp. 34-44 (2005).

[21] J. McDermott and J. Madison. Using

Abuse Case Models for Security

Requirements Analysis (1999).

[22] G. Sindre and L. Opdahl, “Eliciting

security requirements by misuse cases”.

In: Proc of TOOLS Pacific 2000, Sydney,

Australia (2000).

[23] I. Alexander, “Modelling the interplay of

conflicting goals with use and misuse

cases”. In: Proc of the 8th international

workshop on requirements engineering:

foundation for software quality

(REFSQ’02), Essen, Germany (2002).

[24] D. Firesmith, “Engineering security

requirements”, Journal of Object

Technology. pp 53–68 (2003).

[25] E. Nichols and G. Peterson, “A metrics

framework to drive application security

improvement”, The IEEE computer

society. pp 88–91 (2007).

[26] P. Mell, K. Scarfone and S. Raomanosky,

“A complete guide to the common

vulnerability scoring system version 2.0”

219

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

in Forum of Incident Response and

Security Teams (FIRST). pp 1-23 (2007).

[27] I. Chowdhury, B. Chan and M.

Zulkernine, " Security Metrics for Source

Code Structures" In: Proc of the Fourth

International Workshop on Software

Engineering for Secure Systems, Leipzig,

Germany. pp 57-64 (2008).

[28] B. Alshammari, C. Fidge and D. Corney,

“Security metrics for object-oriented

designs”. In: Proc 21st Australian of

Software Engineering Conference,

Brisbane, Australia. pp. 55–64 (2010).
[29] Xu. T. “Composite Measurement Pattern”.

In: proc of WiCOM '08. 4th International

Conference. Dalian, China, pp.1-6 (2008).

[30] McConnell. S. “Code Complete”.

Microsoft Press (2004).

220

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 211-220
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

