International Journal of Research in
Engineering & Technology (IJRET)
ISSN 2321-8843

Vol. 1, Issue 2, July 2013, 155-160
© Impact Journals

REQUIREMENT ENGINEERING: AN OVERVIEW

SHIPRA GUPTA' & MANOJ WADHWA ?
!Assistant Professor, World Institute of Technolo§ghna, Haryana, India
Professor, Echleon Institute of Technology, FarathtHaryana, India
ABSTRACT

Software engineering as a discipline is still eundvand not yet stable. The people associated agithputer field
often face problems with the software. Software lR&gnents and estimation provides software profesds the
information they need to address requirements eegimg and estimation. Requirements form the bakithe initial
estimates and plans on which the software produetiit and validated. This paper recapitulatesdiinition of software
requirement engineering. This paper discusses #sic lconcepts and provocations for requirement neeging and

estimation.
KEYWORDS: Requirements, SRS, Functional Requirements, Nortfamal Requirements, DFD
INTRODUCTION

Software projects are subject to a multitude obfrms that lead to schedule and cost overruns aad quality

of delivered software. This becomes a hurdle inpiteeess of software development for the softwaoéegsionals.

The basic definition of software engineering wagegi by Fritz Bauer as, ‘the establishment and dssoond
engineering principles in order to obtain, econaih; software that is reliable and works efficignton real
machines'.IEEE in its standard 610.12-1990, defswtwvare engineering as, ‘the application of aeystic, disciplined,
quantifiable approach to the development, operatimhmaintenance of approach; that is, the aplitatff engineering to
software.[7]

IEEE in its standard 610.12-1990, defined requimreieas, ‘a condition or capability that must be roet
possessed by a system or a system component $fysatcontract, standard, specification or othemfdly imposed

documents.[3]
Zave[9] provides one of the clearest definition&Ré&f:

“Requirements engineering is the branch of softwangineering concerned with the real-world goals fo
functions of, and constraints on software systelins also concerned with the relationship of thésetors to precise

specifications of software behavior, and to thewletion over time and across software families.”
CLASSIFICATION OF REQUIREMENTS
Requirements can be classified as

* Functional Requirements Functional requirements describe an interacti@iwben the system and its
environment. They focus on the “what” of the systamd identify the “functions” and “data” related

requirements.

* Non-Functional Requirements These requirements focus on “how well” aspectghef system and identify

attributes under which the system needs to operate.

156 Shipra Gupta & Manoj Wadhwa

Non-functional requirements can be further clasdifis

0 Product Requirement: Requirements which specify that the delivered povbdmust behave in a

particular way e.g. execution speed, reliability

o Organizational Requirements: Requirements which are a consequence of orgammzdtpolicies and

procedures e.g. process standards used, implemoan@guirements

0 External Requirements: Requirements which arise from factors which arteral to the system and its

development process e.g. interoperability requirgsdegislative requirements.

Mon-functional
Requirements
Product Organizational Extamal
Ragquiraments - | Regquiremants Requirameants

| 1 | 1

I—J—I [I]

Pedm'nanaa{ Space Delivery | | Implemental | | Standards

[T |
Inter-Operability| Ethical | [Legisiative |

i I |
Privacy Safety

Figure 1: Non-Functional Requirements
* Behavioral Requirements: These requirements include any and all informatienessary to determine if the
runtime behavior of a given implementation is a¢abfe. The behavioral requirements define all aasts on
the system outputs (e.g. value, accuracy, timimg) @esulting system state for all possible inputd aurrent

system state.

» Developmental Quality Attributes: Developmental Quality Attributes include any coastts on the attributes
of the system’s static construction. These inclpdeperties like testability, changeability, maintbility and

reusability.[8]
ACTIVITIES OF REQUIREMENT ENGINEERING

Requirement can be divided into two main set ofivdigs: Requirement Definition and Requirement

Management.
Requirement Definition Consists of

 Requirement Elicitation or Gathering of Requirements: Requirement elicitation portends discovery of all

possible requirements.[1]

Requirement Engineering: An Overview 157

* Requirement Analysis or Modeling: Requirement analysis starts in parallel with regmient elicitation and

involves refining and modeling the requirementdignose inconsistencies, errors and other defects.

* Requirement Documentation: The requirements that are gathered and modelepguaregether in a document

known as software requirement specification documen
» Requirement Review:The SRS is reviewed by all stake holders.
Requirement Management Consists of

 Requirement Change Management:This involves systematic handling of changes toead requirements

(SRS) during the course of the project.

» Requirement Traceability: Requirement traceability is a process of ensutirag bne or more test cases address

each requirement.[5]

A sign off by the representatives of the custorneers and development team marks the end of thereatents

definition activities and the start of the requissthmanagement activities.
REQUIREMENT DOCUMENTATION

The goal of requirement definition and manageméiasp is to closely understand the customer reqainesvand

to systematically organize the requirements ingpecification document. [4]

The requirement document is known as Software Reopgint Specification Document (SRS). SRS forms the

basis for development as well as testing activities

The SRS has Three Main Parts: the introductioméodiocument, the overall description of the sysfi@nwhich

the SRS is written and the specific requirements.

Introduction includes statement of the purposehaf document, a statement of the system’s scopist afl

definitions and acronyms used in the document.

The overall description provides a complete abstvaew. Software lifecycle is used to describe geriod of

time that starts.
SRS Document Should Have the Following Charastics
« Completenessior a software requirements specification to baplete, it must have the following properties:

o Description of all major requirements relating tndtionality, performance, design constraints and

external interfaces.
o Definition of the response of the software systeralt reasonable situations.
o Conformity to any software standards, detailing aagtions which are not appropriate.

o Have full labelling and references of all tablesd aeferences, definitions of all terms and units of

measure.

« Be fully defined, if there are sections in the s@ite requirements specification still to be definéd software

requirements specification is not complete.

158 Shipra Gupta & Manoj Wadhwa

« Consistency:A software requirement specification is consisiémbne of the requirements conflict. There are a

number of different types of confliction:

o Multiple Descriptors - This is where two or more words are used toregfee the same item, i.e. where

the term cue and prompt are used interchangeably.

o Opposing Physical Requirements This is where the description of real world ageclash, e.g. one

requirement states that the warning indicator &ge, and another states that the indicator is red.

o Opposing Functional Requirements- This is where functional characteristics conflie.g. perform

function X after both A and B has occurred, or parf function X after A or B has occurred.

e Traceability: A software requirement specification is traceaiblboth the origins and the references of the
requirements are available. Traceability of thegiarior a requirement can help understand who askethe
requirement and also what modifications have beadento the requirement to bring the requiremeitstourrent
state. Traceability of references are used to h&l modification of future documents by stating veher

requirement has been referenced. By having forewargtability, consistency can be more easily doath

* Unambiguous: One way of removing ambiguity is to use a formatuirements specification language.
The advantage to using a formal language is thativel ease of detecting errors by using lexicaltagtic
analyzers to detect ambiguity. The disadvantagesirig a formal requirements specification languagéhe

learning time and loss of understanding of theesydby the client.

» Verifiable: A software requirement specification is verifialifeall of the requirements contained within the
specification are verifiable. A requirement is Vieble if there exists a finite cost-effective methby which a
person or machine can check that the software ptotheets the requirement. Non-verifiable requiretmien
include "The system should have a good user irdetfar "the software must work well under most géods"
because the performance words of good, well and ar@ssubjective and open to interpretation. If ethud
cannot be devised to determine whether the softwagets a requirement, then the requirement shoeld b
removed or revised.

Requirement Review: The requirement review is a manual process thailnes people from both client and
contractor organization. They check the requireséotument for anomalies and omissions.[6] Reqrgmerification
is the process of checking at each stage whetteerothiput conforms to requirements for that stagee Pasis of
verification is a approach involving tests, insp@ts and analysis. For maximum effectiveness, revdaaed verification
should not be treated as a discrete activity taldx@e only at the end of the preparation of the SR&iew should be

treated as a continuous activity.[7]

e Continuous Review: Requirements cannot be captured correctly at its¢ ime, so several iterations are
required to define requirements accurately. This loa achieved by reviewing the requirements onrdirmaous

basis. This repeated review is a part of an incréah@pproach to elicitation.

Requirement Engineering: An Overview 159

Till all requirements
are met

Requiremants |

Conslruction

Increment 2

Increment 1

Information Strategy Planning . -
Incremen

Figure 2: Incremental Life Cycle Model
* Phase End Review: After the SRS document is cometording to the analysts, the document undergoes
formal review. Without proper review, the requirertse can be incomplete or incorrect. Phase end wevie
involves reading the SRS, verifying that the SR&oisplete, clear, consistent, modifiable, tracedelsible and
testable.

PROBLEMS RELATED TO SRS
According to Ivy Hooks [2] the following are thegiMems in SRS

o Writing Bad Assumptions: Bad assumptions typicalbcur either because authors of the SRS do not

have access to sufficient information or the infation does not exists.

o Writing Implementations instead of RequirementsSSfRould contain what is needed and not how it is

to be provided. Stating implementation details ésra design approach when not intended.

o Using incorrect terms: In a specification, there sarms to be avoided and terms that must be usad i

very specific manner.

o Using wrong Language: Requirements should be easgad and understand. Requirement statements

should not be complicated by long winded explamatiboperations, design or other related informmatio

0 Unverifiable Requirements: Every requirement must \erified when writing the requirements.

Requirements may be unverifiable due to the usardfiguous terms.

o Missing Requirements: Detailed Requirement analigsisecessary to assure that all requirements are

covered.

o Over-specifying: Over specification is the primarguse of cost overruns on their programs. Over-
specifying usually arises from stating somethingt tis unnecessary or from stating overly stringent

requirements.
CONCLUSIONS

This paper defined the basic concepts of softwagineering. Selection of appropriate life cycle mlod one of
the first step in any software project. Pctgeare essentially non-routine, planned set avities, set up to achieve a
well defined objective in a specified time framéngsa set of allocated resources. Any softwgyeoject starts with
requirement gathering. For this the broad scopth@fproposed system should be identified. Accordinthe study of
the system, the requirements are gathered.iR@ment gathering is basically in terms of whatdsbe built. The
gathered requirements are documented in a soff@grerement specification (SRS) document. Tieguirements are

then evaluated by the end-users. According to #titkeged requirements a project team is assignesl pidject manager

160

Shipra Gupta & Manoj Wadhwa

assigns the responsibilities to the team membescording to their skills. Another respduiity of the project

manager is to estimate the cost of developmenttatme frame within which the development will d@mpleted.

REFERENCES
1. A.A Puntambaker, Software Engineering, Technicdlleations Pune, Edition-I.
2. Hooks, I, writing Good Requirements, ProceedingthefThird International Symposium of the NCSE- Wok
2,1993.
3. KARL E. Weigers, Software Requirements, EditionMi¢rosoft
4. Rajib Mall, Fundamentals of Software Engineerinditian-111, PHI
5. Rick D. Craig, Stefan P. Jaskiel, Systematic Safvlesting, Edition-II, Artech House.
6. Sommerville, Software Engineering, Pearson Edition
7. Swapna Kishore, Rajesh Naik, Software RequiremeamisEstimation, Tata Mc-Graw Hill Education
8. Software Engineering Project Management, Wileyarigdition
9. Zave, P. (1997). Classification of Research EffantsRequirements Engineering. ACM Computing Suryeys

29(4): 315-321.

