RECENT TRENDS IN RADIATION THERAPY OF ORAL AND OROPHARYNGEAL CANCERS

Varun Salgotra¹, Sonam Kohli², Raghav Agrawal¹, Soumen Mandal¹

¹. Dept. of Oral and Maxillofacial Surgery, D.J. College of Dental Sciences and Research, India
². Dept. of Oral Medicine and Radiology, D.J. College of Dental Sciences and Research, India

ABSTRACT:

Cancer, one of the most formidable disease affecting mankind today, has not spared any age group, nor has it left untouched any organ of the body. Cancer is a scourge that affects millions of the world population. Oral cancer is the sixth most common cancer worldwide. Radiation therapy has been used alone, or with the surgery or chemotherapy for the combined treatment modality. The major morbidities associated with radiation therapy are altered taste and permanent xerostomia. To overcome these limitations, new treatment regimens and a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. This paper provides an insight about the advances made in the field of radiation therapy for the management of oral and oropharyngeal cancer.

Key words: Radiation therapy, oral Cancer, Oropharyngeal cancer, image guided radiation therapy and intensity modulated radiation therapy

INTRODUCTION:

Oral cancers are the sixth most common cancer worldwide, accounting for an estimated 4% of all cancers. The incidence and mortality from oral cancers varies geographically; the highest age standardized rates of oral cancers are reported in parts of Europe (France, Hungary), Botswana and south central Asia (Sri Lanka, Pakistan, Bangladesh and India).¹ In a recent report prepared by National Institute of Health and Family Welfare (NIHFW), about 75,000 to 80,000 new cases of such cancers reported every year in India accounting 86 per cent of the total oral cancer figure across the world. Squamous cell carcinoma represents 95 percent of the malignant neoplasm of the head and neck cancer. Radiation therapy and surgery have been both used for decades to achieve locoregional control and have a well-established role in the management of oral and oropharyngeal cancers. Radiation therapy has been used alone, or with the surgery or chemotherapy for the combined treatment modality.

Over the past decade, new treatment regimens and a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. Modern radiotherapy has evolved from non-site-specific techniques using bony anatomy and hand-drawn...
blocking toward specialized planning incorporating three-dimensional reconstructions of images and computer optimization algorithms. Corresponding to these changes, there has been specialization in the types of technology used for different cancer sites. For example, the obvious advantages associated with sparing the salivary glands have pushed intensity modulated radiation therapy (IMRT) in the standard treatment of head and neck cancer faster than other cancer sites.[2]

Intensity-modulated radiation therapy (IMRT)

Traditionally, Conventional external beam radiation therapy or 2D - radiotherapy consisted of a single beam delivered to the patient from one to four directions. 3-dimensional conformal radiation therapy (3D-CRT), or CT-based planning was a major advancement in which the profile of each radiation beam is shaped to fit the profile of the target from a beam’s eye view (BEV) using a multileaf collimator (MLC) and a variable number of beams. When the treatment volume conforms to the shape of the tumor, the relative toxicity of radiation to the surrounding normal tissues is reduced, allowing a higher dose of radiation to be delivered to the tumor than conventional techniques would allow.[3] IMRT is the further advancement of 3D-CRT. It optimizes the delivery of irradiation to irregularly-shaped volumes and has the ability to produce concavities in radiation treatment volumes. Intensity-modulated radiation allows modulating the intensity of each radiation beam, so each field may have one or many areas of high intensity radiation and any number of lower intensity areas within the same field, thus allowing for greater control of the dose distribution with the target. By modulating both the number of fields and the intensity of radiation within each field, there are limitless possibilities to sculpt radiation dose.[2] IMRT can be delivered using linear accelerators with static multi-leaf collimators (MLC, step and shoot IMRT) or dynamic leaf MLCs or volumetric arc modulated therapy.[3,4]

C. Nutting et al in a phase III multicenter randomized controlled trial compared intensity modulated and conventional radiotherapy (RT) in head and neck cancer. They found no differences between the overall survival and locoregional control rates, in acute mucositis or pain scores and in other late toxicities. However, there was statistical significant reduction in the incidence of xerostomia in IMRT group.[5] T Gupta et al in a randomized controlled trial, compared the 3D-CRT and IMRT in squamous cell carcinoma of the head and neck and concluded that IMRT significantly reduces the incidence and severity of xerostomia compared to 3D-CRT in curative-intent irradiation of head and neck squamous cell carcinoma (HNSCC).[6] Rathod S et al reported improved Quality-of-life (QOL) scores in patients with head and neck squamous cell carcinoma (HNSCC) treated with IMRT compared to 3D-CRT.[7] Few studies have investigated the impact of IMRT on swallow function and the impact on
everyday life. Initial studies have reported potential benefits but are limited in terms of study design and outcome data.[8] CM Nutting et al and Chen WC et al reported the reduction in the incidence of xerostomia and improvements in associated Quality of Life with IMRT for head and neck cancer.[9,10]

For oral cavity tumors, IMRT as an adjuvant treatment after surgical resection is feasible and effective, with promising results and acceptable toxicity.[11] Oropharyngeal cancer treated with IMRT have excellent disease control. Locoregional recurrence was uncommon, and most often occurred in the high dose volumes. Parotid sparing was accomplished without compromising tumor coverage.[12] IMRT for locoregional Head and Neck Cancer (HNC) is feasible not only as a single modality but also after surgery, after induction chemotherapy and concurrently with chemotherapy.[13]

Image Guide Radiation therapy (IGRT)

Image-guided radiation therapy is the process of frequent two and three-dimensional imaging, during a course of radiation treatment, used to direct radiation therapy utilizing the imaging coordinates of the actual radiation treatment plan. Image-guided radiotherapy by combining the steep dose gradient of IMRT and daily imaging may potentially improve further the toxicity of head and neck irradiation because of the possibility of safe Packed Tumor Volume (PTV) reduction given the reduced interfraction movement through daily imaging. Positron-emission tomography (PET) scan or PET-computed tomography (PET-CT) allows accurate delineation of the tumor and cervical lymph nodes that can be incorporated into the planning CT. PET-CT is superior to CT for tumor imaging because of its ability to detect the tumor metabolic activity in addition to its anatomic location. Although PET-CT is the diagnostic imaging of choice for head and neck cancer IGRT, magnetic resonance imaging (MRI) also plays a critical role when there is suspicion of nerves infiltration, base of skull or parapharyngeal space invasion by the tumor given its better soft tissue discrimination compared to CT. For patients with nasopharyngeal cancer, MRI is complementary to PET-CT because of the tumor location with high risks for intracranial invasion through the skull base foramen and parapharyngeal extension.[14]

The use of IGRT has improved the Quality of Life and preservation of the parotid gland function with treatment toxicity at acceptable level.[15,16] The prevalence of osteoradionecrosis ranges from 5 to 7% in head and neck cancer patients treated with the conventional fractionation (1.8–2 Gy/fraction) and 3D-CRT. The risk of radionecrosis may be reduced with IMRT because of the sharp dose gradient allowing for reduction of the volume of normal bone radiated to a high dose. The reported prevalence of osteoradionecrosis ranges from 1 to 5% depending on the anatomic site of the cancer as cancers of the oral cavity usually require treating a large of volume of the mandible to a high radiation dose. The
IGRT technique may further decrease radiation dose to the mandible and thus the risk of radionecrosis. In a study of 83 head and neck cancer patients of various anatomic sites treated with IMRT and IGRT, only one patient developed radionecrosis. Thus, IGRT may be a promising technique for mandibular preservation in future clinical trials.\[^{14}\]

IGRT systems include gantry-based systems and robotic arm-based systems. Radiation is on while gantry or robotic arm is rotating with multileaf collimator leaf moving continuously. Intensity modulation is created by overlapping arcs. In gantry-based systems, a gantry rotates the therapeutic radiation source around an axis passing through the isocenter. Gantry-based systems include C-arm gantries, in which the therapeutic radiation source is mounted, in a cantilever-like manner, over and rotates about the axis passing through the isocenter. Gantry-based systems further include ring gantries having generally toroidal shapes in which the patient's body extends through a bore of the ring/toroid, and the therapeutic radiation source is mounted on the perimeter of the ring and rotates about the axis passing through the isocenter. Traditional gantry systems (ring or C-arm) deliver therapeutic radiation in single plane (i.e., co-planar) defined by the rotational trajectory of the radiation source. Examples of C-arm systems are manufactured by Siemens of Germany and Varian Medical Systems of California. In robotic arm-based systems, the therapeutic radiation source is mounted on an articulated robotic arm that extends over and around the patient, the robotic arm being configured to provide at least five degrees of freedom. Robotic arm-based systems provide the capability to deliver therapeutic radiation from multiple out-of-plane directions, i.e., is capable of non-coplanar delivery. In comparison to IMRT these systems are fast, safe and accurate.\[^{17}\] They are superior to step and shoot IMRT plans and the treatment delivery time is shortened by fifty percent.\[^{18}\]

Altered fractionation radiation therapy

There is no absolute standard time dose fractionation scheme for the treatment of head and neck cancer. Most commonly used schedule is 2 Gy in a single fraction per day, five days a week, for seven weeks. However, alternative radiotherapy regimens to reduce the total treatment time for head and neck cancers have been assessed. ‘Acceleration’ of the treatment (delivering the same total dose in a shorter time) should reduce the regrowth of the tumor between sessions, resulting in improved local control of the disease. In ‘hyperfractionated’ regimens, two to three fractions are delivered each day, with a reduced dose per fraction equal to 1.1 to 1.2 Gy. The reduction of the dose per fraction may reduce the risk of late toxicity, despite an increased total dose. Acceleration and hyperfractionation can be combined, in particular for regimens in which overall treatment time is reduced. The radiobiological principles explaining why fractionation allows for tumor control without local necrosis are the four “R's”
i.e. repair, reoxygenation, repopulation and redistribution.

A systemic review for head and neck cancer by Baujat B et al reported that ‘altered fractionation radiotherapy confers greater benefit than conventional radiotherapy in tumor control and survival. The effect was greater for the primary tumor than for nodal disease. The effect was also more pronounced in younger patients and in those with good performance status. Hyperfractionation seemed to yield a more consistent advantage for survival than accelerated radiotherapy. However, there was more diversity in accelerated fractionation regimens than in hyperfractionated regimens, and some of these regimens might be associated with higher non-cancer related death, off-setting their benefit in improving tumor control’. Similarly, Glenny AM et al in a systemic review concluded that the altered fractionation radiotherapy is associated with an improvement in overall survival.

REFERENCES:

5. C. Nutting et al. First results of a phase III multicenter randomized controlled trial of intensity modulated versus conventional radiotherapy.

Salgotra V. et al., Int J Dent Health Sci 2014; 1(3): 349-355

Radiation Oncology Volume 74, Issue 1, 1 May 2009, Pages 252–259

