
Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

5 
 

Computer Forensic Functions Testing: Media 
Preparation, Write Protection and Verification 

Yinghua Guo 
School of Computer and Information Science 

University of South Australia 
yinghua.guo@unisa.edu.au 

 
Jill Slay 

School of Computer and Information Science 
University of South Australia 

jill.slay@unisa.edu.au 
 

ABSTRACT 
The growth in the computer forensic field has created a demand for new software 
(or increased functionality to existing software) and a means to verify that this 
software is truly forensic i.e. capable of meeting the requirements of the trier of 
fact. In this work, we review our previous work---a function oriented testing 
framework for validation and verification of computer forensic tools. This 
framework consists of three parts: function mapping, requirements specification 
and reference set development. Through function mapping, we give a scientific 
and systemized description of the fundamentals of computer forensic discipline, 
i.e. what functions are needed in the computer forensic investigation process. We 
focus this paper on the functions of media preparation, write protection and 
verification. Specifically, we complete the function mapping of these functions 
and specify their requirements. Based on this work, future work can be conducted 
to develop corresponding reference sets to test any tools that possess these 
functions. 
Keywords: Computer forensics, validation, media preparation, write protection, 
verification 

1. INTRODUCTION 
Defined by Rodney (Rodney 1999), computer forensics is the process of 
identifying, preserving, analysing and presenting digital evidence in a manner that 
is legally acceptable. In this work, we use the terms Electronic Evidence (EE), 
computer forensics, digital forensics and forensic computing to refer to this 
discipline.  
There is a critical need in the law enforcement community to ensure the reliability 
of computer forensic tools, which means forensic software tools consistently 
produce accurate and objective results.  Hence, a demand of validating and 
verifying these tools has been raised recently (Jason 2007).  Generally, the 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

6 
 

validation and verification (VV) of softwares often refers to methods and 
technologies that provide confidence in system softwares.  Since introduced in the 
early 1990s, the concept of validation and verification has been interpreted in a 
number of contexts by different organizations and communities, such as IEEE 
standard 1012-1998, ISO 17025 and the Scientific Working Group on Digital 
Evidence (SWGDE). Taking into consideration all these definitions and keeping 
in mind the requirements of ISO 17025 (e.g. validation is the confirmation by 
examination and the provision of objective evidence that the particular 
requirements for a specific intended use are fulfilled), we adopt the definitions of 
validation and verification of forensic tools proposed by Jason (Jason 2007). 

 Validation is the confirmation by examination and the provision of 
objective evidence that a tool, technique or procedure functions 
correctly and as intended. 

 Verification is the confirmation of a validation with a laboratories 
tools, techniques and procedures. 

Two approaches, i.e. software inspection and software testing are widely used in 
the field of software validation and verification. While the former takes place at 
all stages of software development life-cycle, inspecting requirements documents, 
design diagrams and program codes, the latter runs an implementation of the 
target software to check if the software is produced correctly or as intended. Since 
our proposed work is to validate existing EE software tools, it falls into the 
software testing category. 
EE software tool validation and verification is still in its embryonic stage, and 
there is limited work in this filed, such as the National Institute of Standards and 
Technology (NIST) project “Computer Forensics Tool Testing” (CFTT) (NIST 
2009) and Brian Carrier’s work Digital Forensics Tool Testing (DFTT) Images 
(Brian 2009).  
In our previous work (Jason 2007), we proposed a function orientated framework 
for EE tool validation and verification. The core principle of our framework is 
function driving, and this framework conceptually consists of three parts: function 
mapping, requirement specification and reference set development.  In this 
framework, we identify fundamental functions required in EE investigations, such 
as search, data recovery, forensic copy and so on. For each function, we further 
identify its details, e.g. sub-categories, components and etc. We call this process 
function mapping. Based on the function mapping, we specify each function's 
requirements and then develop a reference set against which EE tools can be 
tested. Following this work, we focused on and addressed two functions, i.e. 
“search” and “data recovery” in (Guo 2009) and (Guo 2010) respectively. For 
each function, we accomplished its function mapping, requirements specification 
and reference set development.  In this work, we continue our “puzzle game” and 
focus on the functions of “media preparation”, “write protection” and “(forensic 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

7 
 

copy) verification”. The related background information of our VV framework 
and detailed review of existing work of EE software tool validation and 
verification can be found in (Guo 2009). By addressing EE functions one by one, 
we eventually can accomplish the entire function oriented validation and 
verification of EE tools in the end. 
The rest of this paper is organized as follows. In section 2, we review our function 
orientated VV framework. Section 3, 4, 5 address the functions of “media 
preparation”, “write protection” and “verification” respectively, in terms of 
function mapping, requirements specification and reference development.  
Section 6 concludes this paper. 

2. FUNCTION ORIENTED VV FAMEWORK 
In this section, we review our proposed validation and verification paradigm. Our 
methodology starts with a scientific and systemized description of the EE field 
through a model and the function mapping. Components and processes of the EE 
discipline are defined in this model and fundamental functions in EE investigation 
process are specified (mapped), i.e. search, data recovery, file identification and 
etc. Based on the comprehensive and clear understanding of EE discipline, we 
then actually perform the validation and verification of EE tools as follows. First, 
for each mapped function, we specify its requirements. Then, we develop a 
reference set in which each test case (or scenario) is designed corresponding to 
one function requirement. With the reference set, an EE tool or its functions can 
be validated and verified independently. 
In this work, we use the CFSAP (computer forensic-secure, analyze, present) 
model (George 2003) to describe the basic procedures of EE investigation. In this 
model, four fundamental procedures are identified: Identification, preservation, 
analysis and presentation.  In the context of validation and verification, 
identification and presentation are skill based concepts, while preservation and 
analysis are predominately process, function and tool driven concepts and are 
therefore subject to tool validation and verification. The processes of preservation 
and analysis are preliminarily dissected into several fundamental functions at the 
high-level. The functions in the data preservation procedure are forensic copy, 
verification, write protection and media preparation. The data analysis procedure 
involves eight functions: searching, file rendering, data recovery, decryption, file 
identification, processing, temporal data and process automation. An ontology of 
such function mapping is shown in Figure 1.   



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

8 
 

 
 

Fig. 1 A top-level ontology of computer forensic functions 
Our function orientated VV methodology can be presented as the following. If the 
domain of computer forensic functions is known and the domain of expected 
results (i.e. requirements of each function) are known; that is, the range and 
specification of the results, then the process of validating any tool can be as 
simple as providing a set of references with known results. When a tool is tested, 
a set of metrics can also be derived to determine the fundamental scientific 
measurements of accuracy and precision. In summary, if the discipline can be 
mapped in terms of functions (and their specifications) and, for each function, the 
expected results are identified and mapped as a reference set, then any tool, 
regardless of its original design intention, can be validated against known 
elements. 

3. MEDIA PREPARATION FUNCTION 
Images, results of “forensic copy” process, must be accommodated in storage 
devices for future analysis. Three types of storage devices, i.e. magnetic disks 
(hard drives), optical disks (CD, DVD) and semiconductor devices (flash 
memory) are widely available on the market. These devices used by EE 
investigators for storing images could be either brand new or reused from one 
investigation to the next. In both cases, especially the latter one, an investigator 
needs to ensure the device is “clean”, that is the device does not contain any data 
that could inadvertently become included in the current investigation.  We, in this 
work, call the process of initiating storage devices forensically clean as 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

9 
 

sanitisation. Although using the same name, we realize that the concept of 
sanitisation in the computer forensic context has slight differences from that in 
data security context. We will detail these differences in this section.  After being 
sanitized, storage devices may need to be further processed (e.g. a hard disk may 
be partitioned and formatted). Hence, from the function point of view, we further 
dissect the function media preparation into three subcategories: sanitisation, 
partitioning and formatting as shown in Figure 2.     

 

 
 

Fig. 2 Media preparation function mapping 
3.1 Function mapping 

Originally, the concept of sanitisation, or storage media sanitisation, stemmed 
from data security. In today’s digital computing world, all digital data is 
maintained in storage devices, such as hard disk, CD, DVD and flash memory. 
When the owners retire their storage devices without proper data treatment, they 
will risk the unauthorized disclosure of confidential information contained in the 
disposed storage devices. To prevent it from happening, one method is used, that 
is storage media sanitisation. According to (Kissel 2006), sanitisation is referred 
to as “the general process of removing data from storage media, such that there is 
reasonable assurance, in proportion to the confidentiality of the data, that the data 
may not be retrieved and reconstructed”. Four basic sanitization security levels 
and corresponding techniques are defined in (Hughes 2009): weak erase (deleting 
files), block erase (overwrite by external software), normal secure erase (current 
drives), and enhanced secure erase.  
In the forensic computing context, sanitisation is generally referred to as the 
method to make storage device prepared for use/reuse in a forensically sound 
manner. Due to the difference of sanitisation in forensic computing and data 
security in terms of sanitisation purpose, not all techniques of data security 
sanitisation are applicable to the sanitisation in the forensic computing context.  
For example, deleting file and reformatting can be used as sanitisation techniques 
with certain security level in data security context. However, they are not 
forensically sound technique of sanitisation in the forensic computing context. 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

10 
 

This is because deleting a file merely removes its name from the directory 
structure’s special disk sectors. The user data remains in the drive data storage 
sectors and could be included to the next investigation. Reformatting a hard disk 
drive clears the file directory and severs the links between storage sectors, but the 
user data still remains. Therefore, overwriting, i.e. intentionally overlay the 
original data with arbitrary or random data, becomes the most secure technique 
for forensic computing sanitisation.   
There are several factors investigators need to take into account when they 
perform the overwriting sanitisation, such as overwrite pattern, overwrite methods 
(Figure 3) and overwrite target (Figure 4).  First, overwriting could be executed at 
either physical level or application level. By “physical level”, we mean the 
overwriting is performed through using the built-in commands of a hard drive. A 
digital storage device may be attached to a host computer by one of several 
interfaces, such as ATA (AT Attachment), SATA (Serial ATA), SCSI (Small 
Computer System Interface), USB (Universal Serial Bus), and FireWire. For 
ATA and SATA hard drives, the SECURITY ERASE UNIT command 
overwrites a hard drive. This command instructs the drive’s on-board controller to 
run a firmware routine that overwrites disk contents at the physical level, 
including any remapped bad sectors containing old data. The command is also 
supposed to move the drive head off track by 10% so that data between tracks is 
also overwritten. A similar command, ERASE, is defined for the SCSI interface. 
Besides these built-in facilities, there is a wide range of softwares and applications 
can implement the overwriting sanitisation as well. A survey of free and 
commercially available sanitisation tools can be found in (Garfinkel 2003, 
Roubos 2007). 
Secondly and third, investigators need to select what to write (overwrite 
materials) to overlay original data (overwrite target). The selection of overwrite 
materials is the second difference of sanitisation in data security and forensic 
computing. In the data security context where the purpose of sanitisation is to 
overlay original data, the overwrite materials may take various forms of binary 
zeros, fixed data pattern or random data. However, the most overwrite material 
used for sanitisation in forensic computing is binary Zeros because it is required 
that there shall no possibility of inadvertent inclusion of unrelated data from a 
storage device into an investigation.  

 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

11 
 

 
 

Fig. 3 Overwrite pattern and method mapping 
At last, there is debate on the level of sanitisation that should take place, with the 
historical perspective that any wiping should consist of a DOD wipe (3 writes). 
The reason behind this has been justified by the release of a number of papers 
detailing recovery of remanent data.  (Gutmann, 1996).  Although it is a 
controversial endeavour, Wright claims a single write is substantial enough to 
remove data (Wright, 2008).  

 
 

Fig. 4 Overwrite Target 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

12 
 

Digital data contained in modern storage devices falls in one of the following 
categories:  operating system, application programs, and user data stored in files. 
Drives also contain backing store for virtual memory, and operating system meta-
information, such as directories, file attributes, and allocation tables.  There is a 
range of places in storage devices where data could reside. For example, in hard 
disks, the allocated space is where data normally resides. Besides, the ambient 
space (i.e. unallocated space, or space orphaned from the operating or file system) 
may also contain remnants of previous files that were deleted but not completely 
overwritten, bytes at the end of partially filled directory blocks (sometimes called 
slack space), startup software that is not strictly part of the operating system (such 
as boot blocks), and virgin blocks that were initialized at the factory but never 
written. Hence, the ambient space may take the form of file slack, volume slack, 
HPA (Host Protected Area), DCO(Device Configuration Overlay) and so on.  In 
order to obtain a completely “clean” storage device, all above space need to be 
overwritten.   
Apart from sanitisation, partitioning and formatting may be needed to get storage 
devices prepared for accommodating digital evidence or images in some 
circumstances. The specification of partition and formatting, such as how many 
partitions in a hard disk, which file system is specified for each partition, is 
predominately depending on investigation.   

3.2 Requirement Specification 
Requirement specification is the second step of validating and verifying functions. 
Similar to our previous work, we specify requirements of the write preparation 
function in an extendable and custom-made way. From function mapping, we can 
see that there are a variety of diversifications we need to take into consideration 
when we specify the requirements. For example, the overwrite materials could be 
all binary zeros, fixed data pattern or random data. The overwrite target could be 
data in allocated space, ambient space or metadata. Hence, we use variables (in 
boldfaced and italic) to reflect these diversifications, and hence multifarious 
requirements can be refined to the follows statements. When one requirement 
needs change, people just need tailor (add, deleted, or modify) these variables. 

1. The tool shall be able to overwrite overwrite target by overwrite 
means using overwrite pattern.  

2. The tool shall verify the success execution of overwriting 

3. If the tool is not able to overwrite certain area in storage devices (e.g. 
defective sectors), the tool shall inform the user 

4. If the tool support partition function, then the tool shall partition the 
storage device 

5. If the tool support formatting function, then the tool shall format the 
storage device 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

13 
 

This method of requirements specification is highly abstract and generalized. 
When it is needed for developing a specific test scenario in reference set, each of 
these requirements can be unwrapped. For example, the requirement “The tool 
shall be able to overwrite overwrite target by overwrite means using overwrite 
pattern” can be unwrapped and instantiated as “The tool shall be able to overwrite 
data in file slack space by single writing 0s through ATA SECURITY ERASE 
UNIT command” or “The tool shall be able to overwrite data in allocated space 
by multiple writing random data through ATA SECURITY ERASE UNIT 
command " and etc. 

4. WRITE PROTECTION FUNCTION 
One of the forensic computing investigation rules identified by Rodney (Rodney 
1999) is “application of forensic computer processes during the examination of 
original data shall be kept to an absolute minimum”. In other words, during an 
investigation (e.g. acquisition or analysis), digital evidence stored in active system 
or a secondary storage device must be protected from being overwritten or 
altered.  In modern computer systems, data is written to or read from a storage 
device via commands that are issued by the computer and transmitted from the 
computer's interface connection to the storage device's interface connection. 
Hence, the basic strategy for implementing a write protection is to place a filter 
between a host computer and a secondary storage device. This filter monitors I/O 
commands issued by the application. It blocks all commands that could directly or 
potentially cause alteration to the original data, and only allows commands to the 
device that make no changes to the device.  
The filter sitting in the connection between a host computer and a storage device 
could be implemented either as hardware or software.  Accordingly, two types of 
write protection techniques are developed, that are hardware write protection 
(blocking) and software write protection (blocking). Additionally, there is a third 
type of write protection that can be argued. It involves the practitioner adopting 
procedures and practices that reduce or eliminate un-intentional changes to data. 
In the following (as shown by Figure 5), we extrapolate these broad write 
protection functions further, detailing their constituent components.    

 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

14 
 

 
 

Fig. 5 Write Protection function mapping 
4.1 Function mapping 

4.1.1 Hardware write blocking  
The hardware write blocking is implemented by a physical or mechanical device 
(known as hardware write blocker, HWB) that monitors the commands being 
issued and prevents the computer from writing data to the storage device. HWB is 
physically connected between the computer and a storage device, and hence 
breaks the bus used to attach a hard drive to a host computer into two segments. 
Once the blocking device is connected it can intercept a command from the host 
and select a desired course of action (e.g. allowing or blocking) for the command. 
Various storage devices are attached to the host computer through certain physical 
interfaces. The common ones are the ATA and IDE (Integrated Drive Electronics) 
interfaces, including variants such as ATA-2, ATA-3 and EIDE (Enhanced IDE). 
Other physical interfaces include SATA, SCSI, IEEE 1394 and USB. The HWB 
intercepts all commands from the host to the storage device and only issues safe 
commands to the storage device. 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

15 
 

4.1.2 Software write blocking 
Compared to the HWB, the filter that blocks write commands could be also 
implemented in software way, that is software write blocker (SWB).   Basically, 
three approaches are widely used for SWB: Interrupt based blocking, driver based 
blocking and OP applications.   
Today’s operating systems usually provide higher level access interfaces or 
services (compared to low level programming required for direct access drive 
through the interface controller) to execute drive related commands. For example, 
programs running in the DOS environment can use services: DOS service 
interface (Interrupt 0x21) or BIOS service interface (Interrupt 0x13).  A SWB 
works by modifying interrupt table, which is used to locate the code for a given 
BIOS service (Brian 2005). The interrupt table has an entry for every service that 
the BIOS provides, and each entry contains the address where the service code 
can be found. For example, the entry for INT 13h will point to the code that will 
write or read data to or from the disk. A SWB modifies the interrupt table so that 
the table entry for interrupt 0x13 contains the address of the write blocker code 
instead of the BIOS code. When the operating system calls INT13h, the write 
blocker code is executed and examines which function is being requested.      
A SWB can also be implemented as a segment code inserted into the device 
driver stack in operating systems that manages all access to a device. This code 
examines all the commands sent to a device through the stack. Any command that 
could directly or potentially cause modification to a protected drive is blocked, 
i.e., it is not passed on to lower layers of the stack. The third SWB approach 
utilises operating system facilitates to achieve write blocking. For example, in 
Windows XP, people can modify the registry 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\StorageDevic
ePolicies to prevent or allow the writing command. In Unix, command (Mount-
ro) is used for the same purpose. 

4.1.3 Procedure based write blocking 
Apart form HWB and SWB, the third write protection is based on abidance by 
certain procedures or rules. It involves the practitioner adopting procedures and 
practices that reduce or eliminate un-intentional changes to data.  An example 
would include a practitioner using a DOS boot disk to access data on a hard disk, 
called controlled booting.  The disk would boot a known operating system that the 
user would use tools known not to alter data.   

4.2 Requirement specification 
The CFTT project in NIST has covered the requirement specification of write 
protection (block) function very well (NIST 2009).  They have already done 
extensive and comprehensive work on function requirement specification of 
hardware write block and software write block. Hence, we adopt their work and 
use them as requirement specification for our work. However, one concern could 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

16 
 

be raised. That is, their tests may not be very repeatable for the average laboratory 
because it required sourcing a lot of devices, which is unwieldy and costly for 
smaller laboratories or even larger laboratories. 

5. VERIFICATION FUNCTION 
5.1 Function mapping 

In the preservation phase of EE investigation, after forensic copy (Guo 2009) is 
completed, both the original and the copy of the original must be authenticated. 
The meaning of image authentication in computer forensic context is two-fold. 
First, it must be demonstrable that the copy is an exact, bona fide, copy of the 
original. This is raised by the requirement that any conclusions drawn from 
analysis of the copy are valid. The second meaning of image authentication is that 
there must be assurance of the continued integrity of the original. The image 
authentication is often referred to as (forensic copy) verification.  
Forensic copy verification can be implemented on a number of different levels 
(Figure 6), and each has its own degree of reliability in their application.  The 
simplest and lowest reliable verification is the visual inspection. In certain 
circumstances, investigators may verify image’s integrity by visually inspecting 
and comparing the original data and its copy. 
Another verification method is the checksum. It checks for errors in digital data. 
Typically a 16- or 32-bit polynomial is applied to each byte of digital data. The 
result is a small integer value that is 16 or 32 bits in length and represents the 
concatenation of the data. At any point in the future the same polynomial can be 
applied to the data and then compared with the original result. If the results match 
some level of integrity exists. 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

17 
 

 
 

Fig. 6 Forensic copy verification function mapping 
The most commonly used verification method is the cryptographic one way hash 
function (OWHF). OWHF make use of block cipher algorithms to calculate a 
digest (typically a value represented by a 128-bit string or longer) of a file or disk. 
This value is sensitive to the change of even a single bit in the original dada. After 
or during a forensic copy, acquisition tools will calculate a hash value for later 
reference.  When verification is needed, investigators calculate the hash value 
again, and compare the two hash values. A mismatch indicates the integrity 
breach.  MD5 and SHA-1 are widely used in OWHF verification method. 
The digital signature method can provide the highest degree of reliability. It binds 
the identity of the signer with digital data integrity methods (e.g. one-way hash 
values). These methods use a public key crypto-system where the signer uses a 
secret key to generate a digital signature. Anyone can then validate the signature 
generated by using the published public key certificate of the signer. DSA and 
RSA are typical examples of this method (Charlie 2002).         
Another component of verification function is identified by reviewing what the 
digital integrity is. According to Alfred (Alfred 2001), digital integrity can be 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

18 
 

defined as “the property whereby digital data has not been altered in an 
unauthorized manner since the time it was created, transmitted, or stored by an 
authorized source”.  While above verification methods address questions of 
“who” (the signer) and “what” (the digital data), they don’t provide the answer to 
the question of “when”. Specifically, when did the signing of the digital evidence 
occur? How long after the evidence was seized, was its integrity protected? How 
long can we prove the integrity of the digital evidence that we signed? A secure 
and auditable time stamping mechanism or function is a solution to these 
questions (Hosmer 2002). When the forensic copy is done, a time stamp that is 
resistant to manipulation and provides an authenticated audit trail is created. It 
then can be electronically “bind” to digital evidence so that they can be verified 
by a third party.  A number of issues need to be considered in time stamping, such 
as traceability to legal time sources, time distribution, secure digital time stamping 
and etc.  

5.2 Requirements specification 
1. The tool shall accurately perform hash functions and calculate hash 

values of verification objects. 

2. The tool shall support multiple hash functions. 

3. The tool shall support or provide time stamping. 

4. The tool shall not mutate the verification objects.   

5. The tool shall verify the correctness of hash values 

6. CONCLUSION 
In this work, we focus on and address the validation and verification of functions, 
media preparation, write protection and forensic copy verification. Specifically, 
we complete their function mapping and specify their requirements. Based on this 
work, future work can be conducted to develop corresponding reference sets to 
test any tools that possess these functions.  
To complete the entire validation paradigm, more work need to be carried out in 
the future. First, although the proposed methodology holds promise, we realize 
that it needs to be tested at least using one tool in order to evaluate the 
methodology and work out any potential weakness or shortcomings. Hence, some 
tests will be implemented against some real tools, such as EnCase and FTK. 
Secondly, a quantitative model is required to evaluate the results of validation and 
verification. For example, specific metrics are needed to measure the accuracy 
and precision of testing results. Then, we need to design judgement rules of 
validity of EE tools. How to judge if a tool is validated or not? Is a tool validated 
only when it passes all the test cases, or is a tool validated in certain scenarios 
where it pass these test cases? 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

19 
 

REFERENCES 
Alfred J. M., Paul C. O., and Vanstone S. A., (2001) “Handbook of Applied 
Cryptography”, Fifth printing, CRC Press. 
Jason B., and Jill S., (2007) “Digital Forensics: Validation and Verification in a 
Dynamic Work Environment”, Proceedings of the 40th Annual Hawaii 
International Conference on System Sciences, Hawaii. 
Brian C., (2005) “File System Forensic Analysis”, Addison-Wesley Upper 
Saddle River, New York. 
Brian C., (2009) “Digital Forensics Tool Testing Images”, 
http://dftt.sourceforge.net/, Sep. 1 2009. 
Charlie K., Radia P., and Speciner M., (2002) “Network Security: Private 
Communication in a Public World”, Second Edition. in computer networking 
and distributed systems, Prentice Hall PTR. 
Garfinkel S.L., and Shelat, A. (2003), “Remembrance of data passed: a study 
of disk sanitization practices”, IEEE Security and Privacy, Vol.1 (Issue 1): 
Page 17-27. 
George M., Alison A., Byron C., Olivier D. V., and Rodney M., (2003) 
“Computer and intrusion forensics”, Artech House, Boston 
Yinghua G., Jill S., and Jason B., (2009), “Validation and verification of 
computer forensic software tools--Searching Function”, Digital Investigation, 
Vol. 6: PageS12-S22. 
Yinghua G., and Jill S., (2010) “Data Recovery Function Testing for Computer 
Forensics Investigation Tools”, Advances in Digital Forensics VI (Springer, 
2010). 
Gutmann P., (1996), “Secure Deletion of Data from Magnetic and Solid-State 
Memory” http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html, June 
2007 
Hosmer C., (2002) “Proving the Integrity of Digital Evidence with Time,” 
International Journal of Digital Evidence Vol.1 (1). 
Hughes G. F., Coughlin, T., and Commins D. M., (2009), “Disposal of Disk 
and Tape Data by Secure Sanitization,” IEEE Security and Privacy, Vol.7 
(Issue 4): Page 29-34.  
Kissel R., Scholl M., Skolochenko S., and Li X., (2006), “Guidelines for media 
sanitization”, NIST SP 800-88. 
NIST, (2009) “Computer Forensics Tool Testing (CFTT)”, www.cftt.nist.gov, 
Oct. 11 2009. 
Rodney M., (1999) “What is Forensic Computing?”, Australian Institute of 
Criminology, Trends and Issues Technical Report. 



Journal of Digital Forensics, Security and Law, Vol. 5(2) 
 

20 
 

Wright C., Kleiman D., and Shyaam S. R. S., (2008). “Overwriting Hard Drive 
Data: The Great Wiping Controversy”, Lecture Notes in Computer Science 
(Springer Berlin / Heidelberg). 
Roubos D., Palmieri L., Kachur R. L., Herath S., Herath A., and Constantino 
D., (2007). “A study of information privacy and data sanitization problems: 
student paper”, Journal of Comput. Small Coll. 22, 4 (Apr. 2007), 212-219. 
 


